

РЕГУЛЯТОР МИКРОПРОЦЕССОРНЫЙ

МИК-111

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПРМК.421457.023 РЭ

УКРАИНА, г. Ивано-Франковск 2014 Данное руководство по эксплуатации является официальной документацией предприятия МИКРОЛ.

Продукция предприятия МИКРОЛ предназначена для эксплуатации квалифицированным персоналом, применяющим соответствующие приемы и только в целях, описанных в настоящем руководстве.

Коллектив предприятия МИКРОЛ выражает большую признательность тем специалистам, которые прилагают большие усилия для поддержки отечественного производства на надлежащем уровне, за то, что они еще сберегли свою силу духа, умение, способности и талант.

В случае возникновения вопросов, связанных с применением оборудования предприятия МИКРОЛ, а также с заявками на приобретение обращаться по адресу:

Предприятие МИКРОЛ

УКРАИНА, 76495, г.Ивано-Франковск, ул. Автолитмашевская, 5 Б,

Тел +38 (0342) 502701, 502702, 502703, 502704, 504410, 504411

🗎 Факс +38 (0342) 502704, 502705

☐ E-mail: microl@microl.ua support@microl.ua

http://www.microl.ua

Copyright © 2001-2014 by MICROL Enterprise. All Rights Reserved.

СОДЕРЖАНИЕ

		Стр.
1	Описание регулятора	
	1.1 Назначение регулятора	
	1.2 Обозначение регулятора	
	1.3 Технические характеристики регулятора	
	1.3.1 Аналоговый входной сигнал	
	1.3.2 Аналоговый выходной сигнал	
	1.3.3 Дискретные выходные сигналы	
	1.3.4 Регулятор	
	1.3.5 Последовательный интерфейс RS-485	
	1.3.6 Электрические данные	
	1.3.7 Корпус. Условия эксплуатации	
	1.4 Состав регулятора	
	1.5 Средства измерения, инструмент и принадлежности	10
	1.6 Маркировка и пломбирование	
	1.7 YHAKUBKA	10
2	Функциональные возможности	11
3	Конструкция регулятора и принцип работы	12
	3.1 Конструкция регулятора	
	3.2 Передняя панель регулятора	
	3.3 Назначение дисплеев передней панели	
	3.4 Назначение светодиодных индикаторов	
	3.5 Назначение клавиш	
	3.6 Структурная схема регулятора МИК-111	14
	3.7 Принцип работы регулятора МИК-111	14
	3.8 Распределение входов-выходов структуры регулятора МИК-111	17
	3.9 Принцип работы аналогового выхода	17
	3.10 Логика работы дискретных выходов	
	3.11 Принцип работы технологической сигнализации	19
4	Использование по назначению	21
	4.1 Эксплуатационные ограничения при использовании регулятора	21
	4.2 Подготовка регулятора к использованию. Требования к месту установки	21
	4.3 Соединение с внешними устройствами. Входные и выходные цепи	21
	4.4 Подключение электропитания блоков	
	4.5 Конфигурация регулятора	
	4.6 Режим РАБОТА	
	4.7 Режим КОНФИГУРИРОВАНИЕ	
	4.8 Порядок настройки аналогового входа и аналогового выхода	
	4.9 Передаточная функция ПИД-регулятора	31
	4.10 Ручная установка параметров регулирования по переходной функции объекта	00
	регулирования	32
5	Калибровка и проверка регулятора	33
	5.1 Калибровка аналоговых входов	33
	5.2 Линеаризация аналогового входа АІ	
	5.3 Калибровка аналогового выхода	39
6	Техническое обслуживание	40
	6.1 Общие указания	
	6.2 Меры безопасности	
	6.3 Порядок технического обслуживания	40

7 Хранение и транспортирование	42
7.1 Условия хранения регулятора	
7.2 Требования к транспортированию регулятора и условия, при которых оно должно осуществляться	
8 Гарантии изготовителя	42
Приложение А - Габаритные и присоединительные размеры	43
Приложение Б - Подключение регулятора. Схемы внешних	4.4
СОЕДИНЕНИЙ Приложение Б.1 Подключение аналоговых датчиков с пассивными выходами	
Приложение Б.1 Подключение аналоговых датчиков с пассивными выходамиПриложение Б.2 Подключение дискретных нагрузок	
Приложение Б.3 Схема подключения интерфейса RS-485	
Приложение В - Коммуникационные функции	48
Приложение В.1 Общие сведения	48
Приложение В.2 Программно доступные регистры регулятора МИК-111	
Приложение B.3 MODBUS протокол	
Приложение В.4 Формат команд	53
Приложение В.5 Рекомендации по программированию обмена данными с регулятором	5 4
МИК-111Приложение В.6 Блок контроля ошибок	
приложение в.о влок контроля ошиоок	55
Приложение Г - Сводная таблица параметров регулятора МИК-111	56

Настоящее руководство по эксплуатации предназначено для ознакомления потребителей с назначением, принципом действия, устройством, монтажом, эксплуатацией и обслуживанием **регулятора** микропроцессорного МИК-111 (в дальнейшем регулятор МИК-111).

ВНИМАНИЕ!

Перед использованием регулятора, пожалуйста, ознакомьтесь с настоящим руководством по эксплуатации регуляторов МИК-111.

Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!

В связи с постоянной работой по совершенствованию регулятора, повышающей его надежность и улучшающей характеристики, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

Сокращения, принятые в данном руководстве

В наименованиях параметров, на рисунках, при цифровых значениях и в тексте использованы сокращения и аббревиатуры (см. таблицу I), означающие следующее:

Таблица I - Сокращения и аббревиатуры

Аббревиатура (символ)	Полное наименование	Значение
PV или X	Process Variable	Измеряемая величина (контролируемый и регулируемый параметр)
SP или W	Setpoint	Заданная точка (задание регулятору)
MV или Y	Manipulated Variable	Манипулируемая переменная, переменная представляющая значение управляющего воздействия, подаваемого на аналоговый выход устройства
T, t	Time	Время, интервал времени
Al	Analogue Input	Аналоговый ввод
AO	Analogue Output	Аналоговый вывод
DO	Discrete Output	Дискретный вывод

1 Описание регулятора

1.1 Назначение регулятора

Регуляторы МИК-111 представляют собой новый класс современных цифровых регуляторов непрерывного действия с аналоговым, импульсным или двух-, трехпозиционным законом регулирования. Регуляторы применяются для управления технологическими процессами в промышленности. Регулятор МИК-111 позволяет обеспечить высокую точность регулирования. *Отпичительной особенностью* регулятора МИК-111 является наличие трехуровневой гальванической изоляции между входами, выходами и цепью питания.

Регулятор предназначен как для автономного, так и для комплексного использования в АСУТП в энергетике, металлургии, химической, пищевой и других отраслях промышленности и народном хозяйстве.

Регулятор МИК-111 предназначен:

- для измерения контролируемого входного физического параметра (температура, давление, расход, уровень и т. п.), обработки, преобразования и отображения его текущего значения на встроенном четырехразрядном цифровом индикаторе,
- регулятор формирует выходной аналоговый или импульсный сигнал управления внешним исполнительным механизмом, обеспечивая аналоговое, импульсное или позиционное регулирование входного параметра по П, ПИ, ПД или ПИД закону в соответствии с заданной пользователем логикой работы и параметрами регулирования.

1.2 Обозначение регулятора

Регулятор обозначается следующим образом:

МИК-111-AA-C-D-U-L.

Где:

- АА код входного аналогового сигнала:
 - 01 унифицированный от 0 мА до 5 мА
 - 02 унифицированный от 0 мА до 20 мА
 - 03 унифицированный от 4 мА до 20 мА
 - 04 унифицированный от 0 В до 10 В
 - 05 Напряжение от 0 мВ до 75 мВ
 - 06 Напряжение от 0 мВ до 200 мВ
 - **07** Напряжение от 0 В до 2 В
 - **08** TCM 50M, W₁₀₀=1,428, от минус 50°C до плюс 200°C
 - 09 TCM 100M, W₁₀₀=1,428, от минус 50°C до плюс 200°C
 - 10 TCM гр.23, от минус 50°C до плюс 180°C
 - 11 ТСП 50П, W₁₀₀=1,391, от минус 50°С до плюс 650°С
 - 12 ТСП 100П, W₁₀₀=1,391, от минус 50°С до плюс 650°С
 - 13 ТСП гр.21, от минус 50°С до плюс 650°С
 - 14 Термопара ТХА (K), от 0°С до плюс 1300°С
 - **15** Термопара ТХК (L), от 0°С до плюс 800°С
 - 16 Термопара ТЖК (J), от 0°С до плюс 1100°С
 - 17 Термопара ТХКн (É), от 0°С до плюс 850°С
 - 18 Термопара ТПП10 (S), от 0°С до плюс 1600°С
 - **19** Термопара ТПР (В), от 0°С до плюс 1800°С
 - **20** Термопара ТВР-1 (A-1), от 0°С до плюс 2500°С

Примечание: при заказе регулятора с входными сигналами от термопар ТПП-10, ТПР, ТВР-1 регулятор изготавливаются по отдельному заказу и последующая перестройка на другие типы входных сигналов производится только на предприятии-изготовителе.

- С код выходного аналогового сигнала:
 - 1 от 0 мА до 5 мА,
 - **2** от 0 мА до 20 мА.
 - 3 от 4 мА до 20 мА,
 - **4** от 0 В до 10 В*(по отдельному заказу).
 - * Регулятор настраивается на выходной сигнал 0-20 мА и на разъем впаивается нормирующий резистор 499 Ом.
- **D** тип выходных дискретных сигналов:
 - Т транзисторные выходы,
 - **Р** релейные выходы.
- **U** напряжение питания:
 - 220 220В переменного тока,
 - **24** 24В постоянного тока.
- L исполнение передней панели (обозначение кнопок, индикаторов и дисплеев):
 - **UA** украинское,
 - **EN** английское.

Внимание! При заказе регулятора необходимо указывать его полное обозначение, в котором присутствуют типы аналоговых входов, аналогового и дискретных выходов и напряжение питания.

Например, заказано регулятор: <u>МИК-111-09-2-P-220-UA</u>

При этом изготовлению и поставке потребителю подлежит:

- 1) Регулятор микропроцессорный МИК-111,
- 2) Вход аналоговый AI1 код **09** TCM 100M, W₁₀₀=1,428, от минус 50°C до плюс 200°C,
- 3) Выход аналоговый АО код 2 постоянный ток от 0 мА до 20 мА,
- 4) Выходы дискретные код Р релейные,
- 5) Напряжение питания код 220 220В переменного тока.
- 6) Исполнение передней панели код **UA** украинское.

1.3 Технические характеристики регулятора

1.3.1 Аналоговый входной сигнал

Таблица 1.3.1 - Технические характеристики аналогового входного сигнала

Техническая характеристика	Значение
Количество аналоговых входов	1
Тип входного аналогового сигнала	Унифицированные (ГОСТ 26.011-80)
	Постоянный ток:
	от 0 мА до 5 мА
	от 0 мА до 20 мА
	от 4 мА до 20 мА
	Напряжение постоянного тока:
	от 0 В до 10 В
	от 0 мВ до 75 мВ
	от 0 мВ до 200 мВ
	от 0 В до 2 В
	Термопреобразователи сопротивлений ДСТУ 2858-94
	TCM 50M, W ₁₀₀ =1,428, от минус 50°C до плюс 200°C
	TCM 100M, W ₁₀₀ =1,428, от минус 50°C до плюс 200°C
	ТСМ гр.23, от минус 50°С до плюс 180°С
	ТСП 50П, W ₁₀₀ =1,391, Pt50, от минус 50°С до плюс 650°С
	ТСП 100П, W ₁₀₀ =1,391, Pt100, от минус 50°С до плюс 650°С
	ТСП гр.21, от минус 50 °C до плюс 650°C
	теттрішт, ет шинує ест е де пинесте с
	Термопары по ДСТУ 2837-94
	(FOCT3044-94, DIN IEC 584-1):
	ТЖК (J), от 0°С до плюс 1100°С
	ТХК (L), от 0°С до плюс 800°С
	ТХКн (E), от 0°С до плюс 850°С
	ТХА (K), от 0°С до плюс 1300°С
	ТПП10 (S), от 0°С до плюс1600°С
	ТПР (B), от 0°С до плюс 1800°С
	ТВР-1 (A-1), от 0°С до плюс 2500°С
Разрешающая способность АЦП	16 разрядов
Предел допускаемой основной приведенной	≤ 0,2 %
погрешности измерения входных параметров	
Точность индикации	0,01 %
Предел допускаемой дополнительной погрешности,	< 0,2 % / 10 °C
вызванной изменением температуры окружающей сред	
Период измерения, не более	0,1 сек
Гальваническая развязка аналоговых входов	Вход гальванически изолированы от выходов и остальных
	цепей, напряжение гальванической развязки не менее 500 В

Примечания.

1.Аналоговый вход регулятора МИК-111 может быть сконфигурирован на подключение любого типа датчика. 2.При заказе входа типа термопара, в качестве входа температурной коррекции (компенсации термо-ЭДС свободных концов термопары) используется датчик температуры, который находится возле клемм на тыльной стороне регулятора.

1.3.2 Аналоговый выходной сигнал

AO - выходной аналоговый сигнал управления внешним исполнительным механизмом (управляющее воздействие) или ретрансмиссия входного сигнала AI.

Таблица 1.3.2 - Технические характеристики аналоговых унифицированных выходных сигналов

Техническая характеристика	Значение
Количество аналоговых выходов	1
Тип выходного аналогового сигнала	Унифицированные ГОСТ26.011-80
	От 0 мА до 5 мА, Rн ≤ 2000 Ом
	От 0 мА до 20 мА, Rн ≤ 500 Ом
	От 4 мА до 20 мА, Rн ≤ 500 Ом
	От 0 В до 10 В,
Разрешающая способность ЦАП	16 разрядов
Предел допускаемой основной приведенной погрешности	≤ 0,2 %
формирования выходного сигнала после калибровки	
Предел допускаемой дополнительной погрешности,	≤ 0,1 %
вызванной изменением сопротивления нагрузки	
Предел допускаемой дополнительной погрешности,	< 0,2 % / 10 °C
вызванной изменением температуры окружающей среды	
Гальваническая развязка аналогового выхода	Выход гальванически изолированы от входов и
	остальных цепей, напряжение гальванической развязки не менее 500 В

1.3.3 Дискретные выходные сигналы

1.3.3.1 Транзисторный выход

Таблица 1.3.3.1 - Технические характеристики дискретных выходных сигналов. Транзисторный выход

Техническая характеристика	Значение
Количество дискретных выходов	2
Тип выхода	Открытый коллектор (NPN транзистора)
Максимальное напряжение коммутации	≤ 40 В постоянного тока
Максимальный ток нагрузки каждого выхода	≤ 100 mA
Сигнал логического "0"	Разомкнутое состояние транзисторного ключа
Сигнал логической "1"	Замкнутое состояние транзисторного ключа.
Вид нагрузки	Активная, индуктивная
Напряжение внешнего источника питания	Нестабилизированное, (20-40)В постоянного тока
Гальваническая развязка дискретных выходов	Каждый выход гальванически изолирован от других входов и
	остальных цепей, напряжение гальванической развязки не менее
	500 B

1.3.3.2 Релейный выход

Таблица 1.3.3.2 - Технические характеристики дискретных выходных сигналов. Релейный выход

Техническая характеристика	Значение
Количество дискретных выходов	2
Тип выхода	Переключающие контакты реле
Максимальное напряжение коммутации	
переменного (действующее значение) или	~220В переменного тока
постоянного тока	24В постоянного тока
Максимальный ток нагрузки каждого выхода	до 8А переменного тока при активной нагрузке
	до 3А переменного тока при индуктивной нагрузке (соѕф=0.4)
Сигнал логического "0"	Разомкнутое состояние контактов реле.
Сигнал логической "1"	Замкнутое состояние контактов реле.
Вид нагрузки	Активная, индуктивная
Гальваническая развязка дискретных выходов	Каждый выход гальванически изолирован от других входов и
	остальных цепей, напряжение гальванической развязки не менее
	500 B

1.3.4 Регулятор

Таблица 1.3.4 - Технические характеристики регулятора

Техническая характеристика	Значение
Число контуров регулирования	1
Диапазон измирения параметров настройки регулятора:	
- коэффициент усиления	от 000,1 до 050,0
- время интегрирования	от 0000 до 6000
- время дифференцирования	от 0000 до 6000
Зона нечуствительности	от 000,0 до 999,9
Структура регулятора	П, ПИ, ПД, ПИД
(законы регулирования)	Двухпозиционный
	Трехпозиционный
	пид-шим
Контролируемые параметры	Измеряемая величина, заданная точка, значение выхода
,	или положение исполнительного механизма
Вид балансировки узла задатчика	Статическая, динамическая

1.3.5 Последовательный интерфейс RS-485

Таблица 1.3.5 - Технические характеристики последовательного интерфейса RS-485

Техническая характеристика	Значение
Конфигурации сети	Многоточечная
Количество приборов	32 на одном сегменте
Максимальная длина линии в пределах одного сегмента сети	1200 метров
Количество активных передатчиков	1
Диапазон сетевых адресов	255
Скорость обмена/длина линии связи (зависимость экспоненциальная):	62,5 кбит/с 1200 м 375 кбит/с 300 м 2400 кбит/с 100 м 10000 кбит/с 10 м Примечание. На скоростях обмена свыше 115 кбит/с рекомендуется использовать экранированные витые пары.
Тип приемопередатчиков	Дифференциальный, потенциальный
Вид кабеля	Витая пара, экранированная витая пара
Гальваническая развязка	Интерфейс гальванически изолирован от входов-выходов и остальных цепей
Протокол связи	Modbus режим RTU (Remote Terminal Unit)
Назначение интерфейса	Для конфигурирования регулятора, для использования в качестве удаленного устройства при работе в современных сетях управления и сбора информации (приема-передачи команд и данных)

1.3.6 Электрические данные

Таблица 1.3.6.1 - Технические характеристики электропитания

Техническая характеристика	Значение
Электропитание (подключение к сети):	
- постоянного тока	от 18В до 36В
- переменного тока	от 100В до 242В, 50Гц
Потребляемый ток по питанию 24В	≤ 180 mA
Потребляемая мощность от сети	≤ 6,5 BA
переменного тока 220В	
Подключение	С тыльной стороны регулятора с помощью разъем – клеммы.

Таблица 1.3.6.2 - Технические характеристики электропитания аналогового датчика

Техническая характеристика	Значение
Электропитание:	21 B
Потребляемый ток по питанию 21В	≤ 30 mA
Подключение	С тыльной стороны регулятора с помощью разъем – клеммы.

1.3.7 Корпус. Условия эксплуатации

Таблица 1.3.7 - Условия эксплуатации

Техническая характеристика	Значение
Корпус (ВхШхГ):	щитовое исполнение
Мик-111	48 x 96 x 162 mm
Монтажная глубина	170 мм
Вырез на панели	45 ^{+0,6} x 92 ^{+0,8} мм
Температура окружающей среды	от минус 40 °C до плюс 70 °C
Атмосферное давление	от 84 кПа до 106,7 кПа
Вибрация (частотной/амплитудной)	до 60Гц / до 0,1мм
Помещение	закрытое, взрыво-, пожаробезопасное.
	Воздух в помещении не должен содержать пыли и примеси агрессивных
	паров и газов, вызывающих коррозию (в частности: газов, содержащих
	сернистые соединения или аммиак).
Положение при монтаже	согласно проекту
Степень защиты	IP30
Масса блока, не более	350 г

1.4 Состав регулятора

Таблица 1.4 - Комплект поставки регулятора МИК-111

Обозначение	Наименование регулятора	Количество
ПРМК.421457.023	IPMK.421457.023 Регулятор микропроцессорный МИК-111	
ПРМК.421457.023 РЭ	Руководство по эксплуатации (из расчета - 1 экземпляр на любое количество изделий при поставке в один адрес)	1
П3-02	Комплект крепежных зажимных элементов (2 штуки)	1
231-103/026-000	Разъем сетевой (220В)	1*
734-203	Разъем сетевой (24В)	1**
231-108/026-000	Разъем для подключения внешних входных и выходных цепей	2
231-131	Рычаг монтажный для клемм	1
734-230	Рычаг монтажный для клемм питания	1

При поставке регулятора с питанием 220 В переменного тока.

1.5 Средства измерения, инструмент и принадлежности

Перечень принадлежностей, которые необходимы для контроля, регулирования, выполнения работ по техническому обслуживанию регулятора, приведены в таблице 1.5 (согласно ДСТУ ГОСТ 2.610).

Таблица 1.5 - Перечень средств измерения, инструмента и принадлежностей, которые необходимы при обслуживании регупятора МИК-111

Наименование средств измерения, инструмента и принадлежностей	Назначение		
1 Вольтметр универсальный Щ300	Измерение выходного сигнала и контроль напряжения питания		
2 Магазин сопротивлений Р4831	Задатчик сигнала		
3 Дифференциальный вольтметр В1-12	Задатчик сигнала и измерение выходного сигнала		
4 Мегомметр Ф4108	Измерение сопротивления изоляции		
5 Пинцет медицинский	Проверка качества монтажа		
6 Отвёртка	Разборка корпуса		
7 Мягкая бязь	Очистка от пыли и грязи		

1.6 Маркировка и пломбирование

- 1.6.1 Маркировка блока выполнена согласно ГОСТ 26828 на табличке с размерами согласно ГОСТ 12971, которая крепится на боковой стенке корпуса регулятора.
 - 1.6.2 На табличке нанесены такие обозначения:
 - а) товарный знак предприятия-изготовителя;
 - б) наименование регулятора;
 - в) условное обозначение;
 - г) обозначение исполнения;
 - д) порядковый номер регулятора по системе нумерации предприятия-изготовителя;
 - е) год и квартал изготовления;
- 1.6.3 Пломбирование регулятора предприятием-изготовителем при выпуске из производства не предусмотрено.

1.7 Упаковка

- 1.7.1 Упаковка регулятора соответствует требованиям ГОСТ 23170.
- 1.7.2 Регулятор в соответствии с комплектом поставки упаковано согласно чертежам предприятия-изготовителя.
- 1.7.3 Регулятор в транспортной таре транспортируется мелкими отправлениями железнодорожным транспортом (крытыми вагонами) или другим видом транспорта.
- 1.7.4 Регулятор подвержено консервации согласно ГОСТ 9.014 для группы III-I, категории и условий хранения и транспортировки 4 (вариант временной внутренней упаковки ВУ-5, вариант защиты ВЗ-10).
- 1.7.5 В качестве потребительской тары применяются картонные коробки из гофрированного картона согласно ГОСТ 7376 и мешки из полиэтиленовой пленки толщиной не менее 0,15 мм согласно ГОСТ 10354.
 - 1.7.6 При упаковке применены амортизационные материалы согласно ГОСТ 5244.

При поставке регулятора с питанием 24 В постоянного тока.

2 Функциональные возможности

Структура регулятора МИК-111 посредством конфигурации может быть изменена таким образом, что могут быть решены следующие задачи регулирования:

- ✓ Двухпозиционного или трехпозиционного регулятора,
- ✓ ПИД-регулятора с аналоговым выходом, ПИД-регулятора с импульсным выходом с внутренней обратной связью по положению исполнительного механизма, ПИД-ШИМ-регулятора с импульсным выходом,
- ✓ регулятор с автоматической коррекцией измеряемого и регулируемого параметра по датчику термокомпенсации,
 - ✓ контуров автоматического регулирования с управлением от ЭВМ,
- ✓ регулятора ручного управления импульсным исполнительным механизмом, с индикацией задающего воздействия и индикацией положения исполнительного механизма,
 - ✓ индикатора измеряемой физической величины,

Внутренняя программная память регулятора МИК-111 содержит большое количество стандартных функций необходимых для управления технологическими процессами большинства инженерных прикладных задач, например, таких как:

- возможность подключения различных типов датчиков,
- сравнение результата преобразования с уставками минимум и максимум, а также сигнализацию отклонений (технологически опасных зон), выбор типа технологической сигнализации абсолютная или девиационная (зависящая от заданной точки),
 - программная калибровка каналов по внешнему образцовому источнику аналогового сигнала,
 - цифровая фильтрация,
 - произвольное масштабирование шкал измеряемых параметров, линеаризация входных сигналов,
 - извлечение квадратного корня,
 - режимы статической и динамической балансировки задания,
- мониторинг исправности датчиков (их линий связи или измерительного канала) с системой безопасного управления исполнительными механизмами,
 - ретрансмиссия входных аналоговых параметров на аналоговый выход устройства и многое др.

Регулятор представляет собой свободно конфигурируемый компактный прибор. Пользователь, не имеющий знаний и навыков программирования, может просто вызывать и исполнять эти функции путем конфигурации регулятора МИК-111. Регуляторы МИК-111 очень гибкие в использовании и могут быстро и легко, изменив конфигурацию, выполнить большинство встречаемых требований и задач управления технологическими процессами.

Регуляторы МИК-111 конфигурируются через переднюю панель регулятора или через гальванически разделенный интерфейс RS-485 (протокол ModBus), что также позволяет использовать регулятор в качестве удаленного устройства при работе в современных сетях управления и сбора информации.

Параметры конфигурации регулятора МИК-111 сохраняются в энергонезависимой памяти и регулятор способен возобновить выполнение задач управления после прерывания напряжения питания. Батарея резервного питания не используется.

3 Конструкция регулятора и принцип работы

3.1 Конструкция регулятора

Регулятор МИК-111 сконструирован по блочному принципу и включает:

- пластмассовый корпус,
- фронтальный блок передней панели с элементами обслуживания (клавиатурой) и индикации,
- с тыльной стороны размещены съемные разъем-клеммы к которым подключаются питание, входные и выходные сигналы.

3.2 Передняя панель регулятора

Для лучшего наблюдения и управления технологическим процессом регулятор МИК-111 оборудован активной четырехразрядной цифровой индикацией для отображения измеряемой величины — дисплей **ПАРАМЕТР**, заданной точки и значения управляющего воздействия (при нажатии клавиши БОЛЬШЕ или МЕНЬШЕ) — дисплей **ЗАВДАННЯ**, необходимым количеством клавиш обслуживания и сигнализационных светодиодных индикаторов. Внешний вид передней панели регулятора МИК-111 приведен на рисунке 3.1.

Рисунок 3.1 - Внешний вид передней панели регулятора МИК-111

3.3 Назначение дисплеев передней панели

• Дисплей ПАРАМЕТР

В режиме РАБОТА индицирует значение измеряемой величины.

В режиме КОНФИГУРИРОВАНИЕ индицирует уровень конфигурации, затем номер пункта меню, затем мигая значение параметра выбранного пункта меню.

• Дисплей ЗАВДАННЯ

В режиме РАБОТА индицирует значение заданной точки или при нажатии клавиши [▲] или [▼] сигнал положения исполнительного механизма (в %).

В режиме КОНФИГУРИРОВАНИЕ индицируются символы « $\Box \cap \vdash \Box$ », указывающие пользователю о том, что регулятор находится в режиме конфигурации.

3.4 Назначение светодиодных индикаторов

• **Индикатор ▲ (MAX)** Светится, если значение измеряемой величины превышает значение уставки сигнализации отклонения **MAX**.

• **Индикатор ▼ (MIN)** Светится, если значение измеряемой величины меньше значения уставки сигнализации отклонения **MIN**.

• **Индикатор** Светодиодный индикатор состояния ключа БОЛЬШЕ импульсного или позиционного **БОЛЬШЕ** регулятора. Светится при включенном ключе БОЛЬШЕ.

• **Индикатор** Светодиодный индикатор состояния ключа МЕНЬШЕ импульсного или **МЕНЬШЕ** трехпозиционного регулятора. Светится при включенном ключе МЕНЬШЕ.

• Индикатор РУ Светится, если регулятор находится в ручном режиме управления, и не светится, если регулятор находится в автоматическом режиме управления.

• Индикатор ІНТ Мигает, если происходит передача данных по интерфейсному каналу связи.

3.5 Назначение клавиш

Нажатие клавиши вызывает переход из автоматического режима управление в режим ручного управления и обратно (совместно с нажатием клавиши [♣], для подтверждения выполнения операции перехода).

Клавиша "больше". При каждом нажатии этой клавиши осуществляется увеличение значения заданной точки, выходного сигнала управления (управляющего воздействия). При удерживании этой клавиши в нажатом положении увеличение значений

Клавиша "меньше". При каждом нажатии этой клавиши осуществляется уменьшение значения заданной точки, выходного сигнала управления (управляющего воздействия). При удерживании этой клавиши в нажатом положении уменьшение значений происходит непрерывно.

Клавиша предназначена для подтверждения выполняемых действий или операций, для фиксации вводимых значений. Например, подтверждение перехода из автоматического режима работы в режим ручного управления и обратно, фиксация ввода измененной заданной точки, подтверждение входа в режим конфигурации и т.п.

Клавиша предназначена для вызова меню конфигурации, для выхода из пунктов меню, а также для выхода из меню конфигурации.

В режиме РАБОТА при кратковременном нажатии данной клавиши включается режим изменения задания регулятора (дисплей ЗАВДАННЯ).

Клавиша [⋪]

• Клавиша [▼]

Клавиша [О]

3.6 Структурная схема регулятора МИК-111

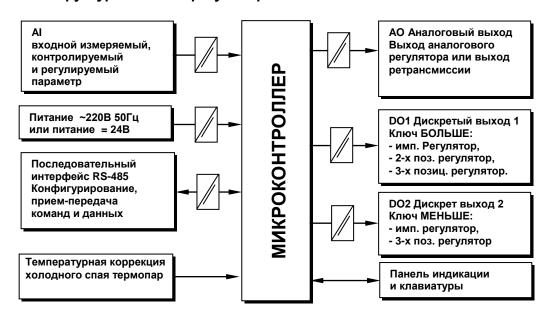


Рисунок 3.2 - Структурная схема регулятора МИК-111

3.7 Принцип работы регулятора МИК-111

Регулятор МИК-111, структурная схема которого приведена на рисунке 3.2, представляет собой устройство измерения значения входного параметра, обработки и преобразования входного сигнала и выдачи управляющих воздействий.

Регулятор МИК-111 работает под управлением современного, высоко интегрированного микроконтроллера RISC архитектуры, изготовленного по высокоскоростной КМОП технологии с низким энергопотреблением. В постоянном запоминающем устройстве располагается большое количество функций для решения задач контроля и регулирования. Посредством конфигурирования пользователь может самостоятельно настраивать регулятор на решение определенных задач.

Регулятор МИК-111 оснащен аналого-цифровым преобразователем, цифро-аналоговым преобразователем, цифро-дискретного вывода, сторожевыми схемами для контроля циклов работы программы, энергонезависимой памятью EEPROM, NVRAM для сохранения пользовательских параметров конфигурации и данных.

Внутренняя программа регулятора МИК-111 функционирует с постоянным временным циклом. В начале каждого цикла внутренней рабочей программы считываются значения аналоговых и дискретных входов, производится считывание и обработка клавиатуры (подавление дребезга и обнаружение достоверности), прием команд и данных из последовательного интерфейса. При помощи этих входных сигналов осуществляются, в соответствии с запрограммированными функциями и пользовательскими параметрами конфигурации, все расчеты. После этого осуществляется вывод информации на аналоговый выход, дискретные выхода, на индикационные элементы, а так же фиксация вычисленных величин для режима передачи последовательного интерфейса.

3.7.1 Принцип работы блока обработки аналогового входа

Регулятор МИК-111 имеет один аналоговый вход AI, сигнал с которого обрабатывается блоком преобразования аналогового входного сигнала AIN. Настройки этого блока вводятся на уровни конфигурации **AIN**.

Аналоговый сигнал имеет процедуру обработки. Данная процедура используется для представления входного аналогового сигнала в необходимой пользователю форме. На рисунке 3.3 показана функциональная схема блока обработки аналогового входного сигнала.

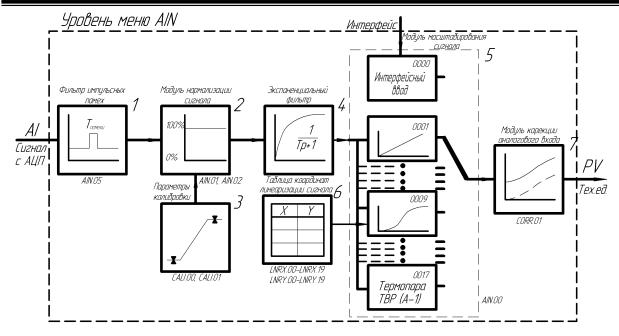


Рисунок 3.3 – Функциональная схема блока преобразования входного сигнала

На рисунке принятые следующие обозначения:

- 1. Фильтр импульсных помех. Используется для подавления импульсных помех. Определяется параметром AIN.05 «Максимальная длительность импульсной помехи». Если в каком либо цикле измерения технологического параметра обнаружено его изменение, то предполагается возможность действия помехи и выходной сигнал формируется (с учетом усреднения измерительных значений) по истечении установленного времени длительности помехи. То есть, если длительность изменения сигнала больше заданного Т_{помехи}, то это изменение расценивается как естественное и принимается в дальнейшую обработку с задержкой времени Т_{помехи} (рисунок 3.4). Работа данного фильтра вносит дополнительное транспортное запаздывание в систему регулирования, которое равно величине параметра «Максимальная длительность импульсной помехи». Поэтому всегда нужно стремиться минимизировать данный параметр.
- 2. Модуль нормализации сигнала. Этот модуль нормализует входной аналоговый сигнал. Важной функцией данного модуля есть контроль достоверности данных. В случае выхода аналогового сигнала на 10% за диапазон, который устанавливается при калибровке регулятора, модуль посылает сигнал регулятору о недостоверности данных в канале. При этом если сигнал ниже диапазона изменения на дисплее горит E r r L, при превышении данного диапазона на дисплее горит E r r L. В обоих случаях генерируется событие «разрыв линии связи с датчиком».
- 3. Параметры калибровки. Определяют точность канала и меняются при замене датчика или переходе на другой тип датчика. Подробнее о калибровках аналоговых входов смотрите в разделе посвященному калибровкам.
- 4. Экспоненциальный фильтр (рисунок 3.4). Фильтр используется для подавления помех, а также для подавления «дребезга» индикации (частых изменений показаний регулятора из-за колебаний входного сигнала). Определяется параметром AIN.04 «Постоянная времени цифрового фильтра».
- 5. Модуль масштабирования сигнала. Этот модуль линиаризирует и масштабирует входной сигнал согласно заданной пользователем номинальной статической характеристики датчика, который подключен к данному входу. Имеется в виду, что именно здесь выбирается тип подключенного к каналу датчика. Также в этом модуле есть возможность извлечения квадратного корня из входного сигнала. Пользователь имеет возможность линеаризовать сигнал по собственной кривой линеаризации.
- 6. Таблица координат линеаризации сигнала. Данная таблица определяет координаты пользовательской линеаризации, параметры которой задаются на уровне конфигурации **LNRX** и **LNRY**.
- 7. Модуль коррекции аналогового входа. В этом модуле сигнал, преобразованный в предыдущих блоках, смещается на заданное пользователем (уровень **CORR**) значение. Значение коррекции суммируется с входным сигналом или вычитается из входного сигнала, в зависимости от знака коэффициента коррекции.

Примечания:

- 1. При выборе типа датчика с заданным диапазоном измерения, в модуле масштабирования сигнала параметры выставляются автоматически и изменение их заблокировано.
- 2. При интерфейсном вводе настойки модуля нормализации и фильтров не имеют смысла, так как сигнал по интерфейсу передается сразу в модуль масштабирования сигнала.

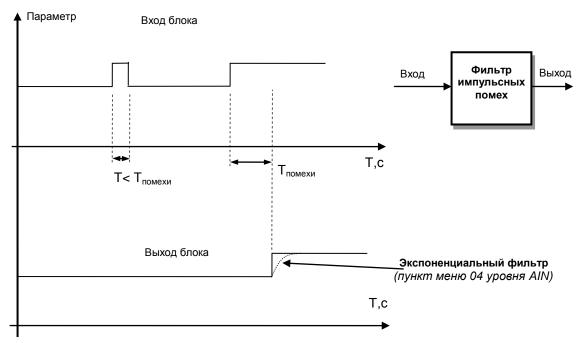


Рисунок 3.4 – Принцип роботы фильтра импульсных помех и экспоненциального фильтра

3.7.2 Структура блока регулирования МИК-111

МИК-111 имеет 5 типов регулятора (СТRL.00 меню конфигурации, Приложение Г):

- 2-х позиционный регулятор,
- 3-х позиционный регулятор,
- ПИД-ШИМ регулятор,
- ПИД-аналоговый регулятор,
- ПИД-импульсный регулятор.

Внутренняя структура блока регулирования МИК-111 будет иметь вид, приведенный на рисунке 3.5.

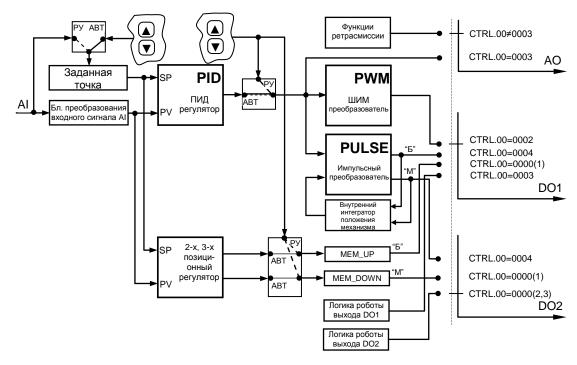


Рисунок 3.5 - Функциональная схема блока регулирования МИК-111.

3.8 Распределение входов-выходов структуры регулятора МИК-111

Таблица 3.1 – Распределения входов-выходов регулятора МИК-111

Структура регулятора, определяемая параметром [CTRL.00]	Аналоговый вход Al	Аналоговый выход АО	Дискретный выход DO1	Дискретный выход DO2
0000 – 2-х позиционный регулятор	Регулируемый параметр	Ретрансмиссия ²⁾	Выход 2-х поз. регулятора	Своб. конфиг. ¹⁾
0001 – 3-х позиционный регулятор	Регулируемый параметр	Ретрансмиссия ²⁾	Выход БОЛЬШЕ	Выход МЕНЬШЕ
0002 – ПИД-ШИМ-регулятор	Регулируемый параметр	Ретрансмиссия ²⁾	Выход ПИД-ШИМ регулятора	Своб. конфиг. ¹⁾
0003 – аналоговый ПИД-регулятор	Регулируемый параметр	Выход регулятора	Своб. конфиг. ¹⁾	Своб. конфиг. ¹⁾
0004 – ПИД-импульсный регулятор	Регулируемый параметр	Ретрансмиссия ²⁾	Выход БОЛЬШЕ	Выход МЕНЬШЕ

Примечания.

- 1. Сигналы DO1 и DO2 являются свободно-конфигурируемые. Т.е. если какой-либо из сигналов DO1, DO2 не задействован в структуре выбранного типа регулятора (см. параметр CTRL.00), то свободный дискретный выход может в соответствии с выбранной логикой работы и уставками управляться одним из выбранных аналоговых сигналов (см. параметры DOT1.00, DOT2.00).
- 1.1 Если DOT1.00, DOT2.00 = 0000, то есть включена опция интерфейсного вывода, это означает, что данным выходом управляет, не регулятор, а управляется по интерфейсу.
- 2. При использовании функции ретрансмиссии на аналоговый выход регулятора передаются следующие аналоговые сигналы регулятора (см. параметры уровня АОТ.00):
 - значение измеряемой величины PV;
 - рассогласование регулятора (отклонения);
 - заданная точка.

3.9 Принцип работы аналогового выхода

Регулятор МИК-111 имеет один аналоговый выход. Аналоговый выход может работать в таких двух режимах:

- 1. Ретрансмиссия (прямая передача с масштабированием) входного сигнала на выход.
- 2. Выход аналогового ПИД-регулятора.

При использовании аналогового выхода в режиме **ретрансмиссии**, источником сигнала может быть измеряемая величина PV; рассогласование регулятора (отклонение), заданная точка. При работе выхода в режиме ретрансмиссии важными параметрами есть: «Значение входного сигнала равное 0% выходного сигнала» и «Значение входного сигнала равное 100% выходного сигнала». Этими параметрами достигается масштабирование выходного сигнала относительно входного. Таким образом, можно реализовать вывод аналогового сигнала, который будет повторять форму сигнала подключенного на вход блока аналогового вывода, но на его определенном диапазоне. Рисунок 3.6 иллюстрирует работу аналогового вывода в режиме ретрансмиссии.

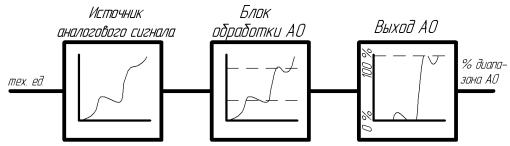


Рисунок 3.6 – Работа блока аналогового вывода в режиме ретрансмиссии

Как видно из рисунка 3.6 блок обработки нормирует входной сигнал, приводя его в диапазон 0 – 100% выходного сигнала. В зависимости от типа выходного сигнала это будет выражаться в электрических сигналах. Например, аналоговый выход имеет калибровку 0 – 20 мА. В этом случае при сигнале 50% из блока обработки АО на клеммы будет подаватся ток 10 мА.

Из рисунка 3.6 видно работу параметров «Значение входного сигнала равное 0% выходного сигнала» и «Значение входного сигнала равное 100% выходного сигнала». Данные параметры изображены на рисунке пунктирными линиями в блоке обработки АО. Таким образом, на аналоговый выход можно подать только интересующую часть входного сигнала.

При использовании аналогового выхода в режиме **выхода** аналогового ПИД-регулятора источником сигнала есть выход регулятора.

Переключение режимов работы аналогового выхода осуществляется **автоматически**. При включении регулятора в режим аналогового ПИД-регулятора, аналоговый выход автоматически включается в режим работы «Выход аналогового ПИД-регулятора». Если же в контуре выбран любой другой тип регулятора, то выход автоматически работает в режиме «Ретрансмиссия» с указанным источником аналогового сигнала.

Примечание:

- 1. Параметры настройки работы аналогового выхода сгруппированы на уровне АОТ;
- 2. Для корректной работы аналоговый выход должен быть откалиброван.

3.10 Логика работы дискретных выходов

Дискретные выходы регулятора МИК-111 имеют свободно конфигурируемую логику работы. Это значит, что пользователь сам определяет назначение того или иного дискретного выхода, если он не задействован для какого-то регулятора.

Внимание: Если дискретный выход задействован в структуре любого регулятора, то для данного дискретного выхода логика управления **не имеет значения**.

Для дискретного выхода, который не используется ПИД-регулятором, источником аналогового сигнала есть измеряемая величина PV. Далее по выбранной логике (**DOT1.00**, **DOT2.00**) обрабатывается и выдает логический ноль или единицу, после чего формируется сигнал «**Выкл/Вкл**». То есть, на логике компаратора имеется возможность построить двух-, трех- и многопозиционный регулятор.

Пример работы выходного устройства по логике двухпозиционного регулятора показан на рисунке 3.7 и 3.8.

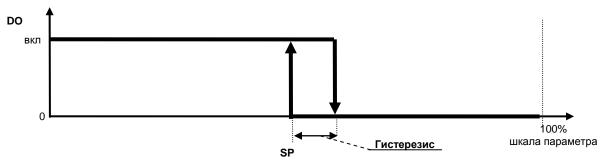


Рисунок 3.7 – Пример работы выходного устройства по логике обратного 2-х позиционного управления п.CTRL.00=0000, п. CTRL.02=0000

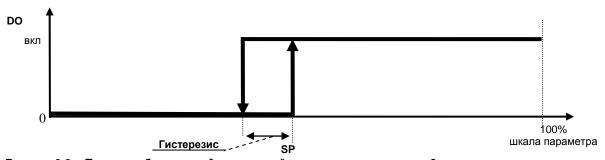


Рисунок 3.8 – Пример работы выходного устройства по логике прямого 2-х позиционного управления п. CTRL.00=0000, п. CTRL.02=0001

Для импульсного регулятора существует такой параметр, как задержка на включения DO в противоположном направлении. Это время паузы, после которого возможно изменение направления движения исполнительного механизма при соответствующем рассогласовании (с целью защиты схем управления от лишних включений и самого электродвигателя).

Трехпозиционный регулятор работает только в обратном типе управления регулятора. Когда параметр растет и становится чуть больше заданной точки, то возникает ситуация когда включены два выхода. Это не допустимо, когда регулятор управляет реверсивным двигателем. Для предотвращения подобной ситуации необходимо использовать параметр CTRL.06 — зона нечувствительности 3-х позиционного регулятора (мертвая зона). Тогда выходы регулятора будут работать по логике, показанной на рисунке 3.9.

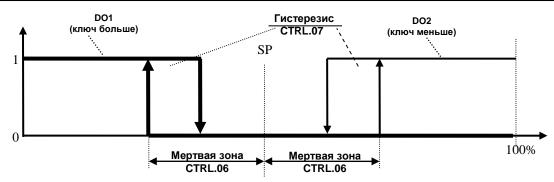


Рисунок 3.9 - График работы дискретных выходов 3-х позиционного регулятора с использованием зоны нечувствительности (CTRL.06)

Два дискретных выхода могут использовать в качестве входного сигнала один и тот же аналоговый вход (AI) и исполнять каждый свою логику роботы.

Выходной сигнал может быть статическим и импульсным (динамическим). Выбор длительности (типа) выходного сигнала производится на уровне **DOT1.05**, **DOT2.05**. Длительность выходного импульса равная 000.0 соответствует статическому выходному сигналу.

Для примера импульсного выхода выберем логику работы дискретного выхода – меньше уставки MIN (DOT1.00=0002), длительность импульсного сигнала - 3 секунды (DOT1.01=003,0). Выходной сигнал при таких параметрах изображен на рисунке 3.10.

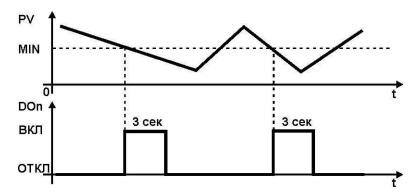


Рисунок 3.10 – График работы дискретного выхода при импульсном типе выходного сигнала

3.11 Принцип работы технологической сигнализации

Для входного параметра PV производится контроль выхода его за границы уставок технологической сигнализации.

Необходимо помнить, что уставки сигнализации должны входить в границы размаха шкалы измеряемой величины.

Технологическая сигнализация используется для сигнализации на индикаторах MIN и MAX передней панели регулятора, сигнализации на верхнем уровне, а также для логики работы дискретных выходов как обобщенная технологическая сигнализация (п.м. DOT1.00=[0005], DOT2.00=[0005]).

Состояние обобщенной технологической сигнализации записывается в регистр 14 (см. таблицу В.1). Технологическая сигнализация имеет два вида:

- абсолютная сигнализация. Используется когда нужно сигнализировать выход параметра за установленные границы. В таком случае задаются нижние верхние границы технологической сигнализации.
- девиационная сигнализация. Используется когда нужно сигнализировать отклонение технологического параметра от значения заданной точки на значение уставок технологической сигнализации. Пример абсолютной и девиационной сигнализации приведен на рисунках 3.11 и 3.12.

Гистерезис технологической сигнализации задается в пункте меню CTRL.15. Принцип работы гистерезиса представлен на рисунках 3.11 и 3.12.

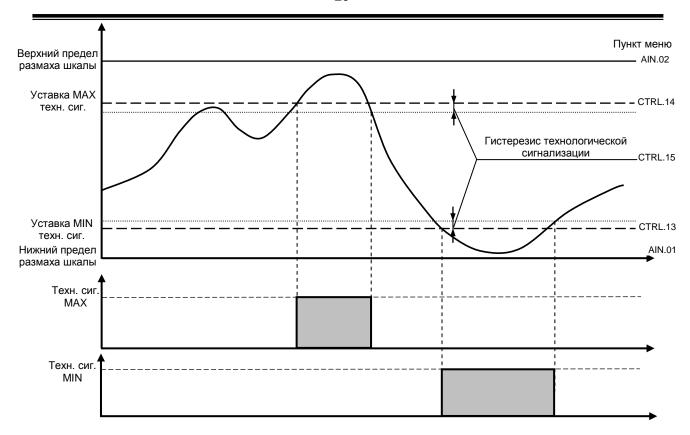


Рисунок 3.11 - График срабатывания абсолютной технологической сигнализации п.CTRL.12=0000

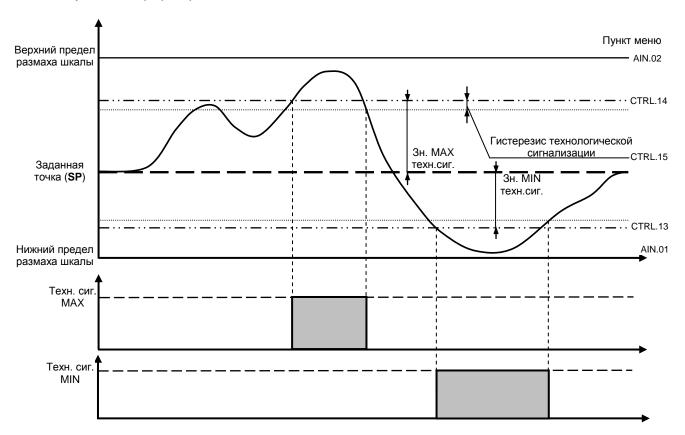


Рисунок 3.12 - График срабатывания девиационной технологической сигнализации п. CTRL.12=0001

4 Использование по назначению

4.1 Эксплуатационные ограничения при использовании регулятора

- 4.1.1 Место установки регулятора МИК-111 должно отвечать следующим условиям:
- обеспечивать удобные условия для обслуживания и демонтажа;
- температура и относительная влажность окружающего воздуха должна соответствовать требованиям климатического исполнения регулятора;
- окружающая среда не должна содержать токопроводящих примесей, а также примесей, которые вызывают коррозию деталей регулятора;
- напряженность магнитных полей, вызванных внешними источниками переменного тока частотой 50 Гц или вызванных внешними источниками постоянного тока, не должна превышать 400 А/м:
 - параметры вибрации должны соответствовать исполнению 5 согласно ГОСТ 22261.
 - 4.1.2 При эксплуатации регулятора необходимо исключить:
 - попадание токопроводящей пыли или жидкости внутрь регулятора;
 - наличие посторонних предметов вблизи регулятора, ухудшающих его естественное охлаждение.
- 4.1.3 Во время эксплуатации необходимо следить за тем, чтобы подсоединенные к изделию провода не переламывались в местах контакта с клеммами и не имели повреждений изоляции.

4.2 Подготовка регулятора к использованию. Требования к месту установки

- 4.2.1 Освободите регулятор от упаковки.
- 4.2.2 Перед началом монтажа регулятора необходимо выполнить внешний осмотр. При этом обратить особенное внимание на чистоту поверхности, маркировки и отсутствие механических повреждений.
 - 4.2.3 Регулятор МИК-111 рассчитан на монтаж на вертикальной панели электрощитов.
- 4.2.4 Регулятор должен устанавливаться в закрытом взрывобезопасном и пожаробезопасном помещении. Используйте регулятор при температуре и влажности, отвечающим требованиям и условиям эксплуатации, указанным в главе 1 настоящей инструкции.
- 4.2.5 Не загромождайте пространство вокруг устройства для нормального теплообмена. Отведите достаточно места для естественной вентиляции устройства. Не закрывайте вентиляционные отверстия на корпусе устройства. Если регулятор подвергается нагреванию, для его охлаждения до температуры ниже 70 °C, используйте вентилятор.
- 4.2.6 Габаритные и присоединительные размеры Регулятора МИК-111 приведены в приложении A.

4.3 Соединение с внешними устройствами. Входные и выходные цепи

- 4.3.1 **ВНИМАНИЕ!!!** При подключении регулятора МИК-111 соблюдать указания мер безопасности раздела 6 настоящего руководства.
- 4.3.2 Кабельные связи, соединяющие регулятор МИК-111, подключаются через клеммные колодки в соответствии с требованиями действующих "Правил устройства электроустановок".
- 4.3.3 Подключение входов-выходов к регулятору МИК-111 производят в соответствии со схемами внешних соединений, приведенных в приложении Б.
- 4.3.4 При подключении линий связи к входным и выходным клеммам принимайте меры по уменьшению влияния наведенных шумов: *используйте* входные и (или) выходные шумоподавляющие фильтры для регулятора (в т.ч. сетевые), шумоподавляющие фильтры для периферийных устройств, используйте внутренние цифровые фильтры аналоговых входов регулятора МИК-111.
- 4.3.5 Не допускается объединять в одном кабеле (жгуте) цепи, по которым передаются аналоговые, интерфейсные сигналы и сильноточные сигнальные или сильноточные силовые цепи. Для уменьшения наведенного шума отделите линии высокого напряжения или линии, проводящие значительные токи, от других линий, а также избегайте параллельного или общего подключения с линиями питания при подключении к выводам.
- 4.3.6 Необходимость экранирования кабелей, по которым передается информация, зависит от длины кабельных связей и от уровня помех в зоне прокладки кабеля. Рекомендуется использовать изолирующие трубки, каналы, лотки или экранированные линии.
- 4.3.7 Применение экранированной витой пары в промышленных условиях является предпочтительным, поскольку это обеспечивает получение высокого соотношения сигнал/шум и защиту от синфазной помехи.
- 4.3.8 Подключайте стабилизаторы или шумоподавляющие фильтры к периферийным устройствам, генеририрующим электромагнитные и импульсные помехи (в частности, моторам, трансформаторам, соленоидам, магнитным катушкам и другим устройствам, имеющим излучающие компоненты).

4.4 Подключение электропитания блоков

- 4.4.1 **ВНИМАНИЕ!!!** При подключении электропитания регулятора МИК-111 соблюдать указания мер безопасности раздела 6 настоящего руководства.
- 4.4.2 Для обеспечения стабильной работы оборудования колебания напряжения и частоты питающей электросети должны находиться в пределах технических требований, указанных в разделе 1, а для каждого составляющего компонента системы в соответствии с их руководствами по эксплуатации. При необходимости, для непрерывных технологических процессов, должна быть предусмотрена защита от отключения (или выхода из строя) системы подачи электропитания установкой источников бесперебойного питания.
- 4.4.3 Для регуляторов МИК-111 с исполнением для питания от сети переменного тока 220В провода электропитания сети переменного тока 220В подключаются к клеммам колодки 220В, расположенной на задней панели регулятора МИК-111.
- 4.4.4 Устанавливая шумоподавляющий фильтр (сигнальный или сетевой), обязательно уточните его параметры (используемое напряжение и пропускаемые токи). Располагайте фильтр как можно ближе к регулятору.

4.5 Конфигурация регулятора

Регулятор представляет собой свободно конфигурируемый компактный регулятор. Пользователь, не имеющий знаний и навыков программирования, может просто вызывать и исполнять различные функции путем конфигурации регулятора МИК-111. Регуляторы МИК-111 очень гибкие в использовании и могут быстро и легко, изменивши конфигурацию, выполнить большинство встречаемых требований и задач управления технологическими процессами.

Регуляторы МИК-111 конфигурируются через переднюю панель регулятора или через гальванически разделенный интерфейс RS-485 (протокол ModBus), что также позволяет использовать регулятор в качестве удаленного контроллера при работе в современных сетях управления и сбора информации.

Параметры конфигурации регулятора МИК-111 сохраняются в энергонезависимой памяти и регулятор способен возобновить выполнение задач управления после прерывания напряжения питания. Батарея резервного питания не используется.

Программа конфигурации регулятора МИК-111 должна быть составлена заранее и оформлена в виде таблицы (см. приложение Г), что избавит пользователя от ошибок при вводе параметров конфигурации.

Назначение элементов передней панели, назначение светодиодных индикаторов и клавиш - представлено в соответствующих разделах главы 3. Порядок конфигурации изложен в етой главе.

4.6 Режим РАБОТА

Более детально режимы работы, уровни защиты и режим конфигурации описаны в последующих разделах данной главы. Диаграмма режимов работы, защиты и настроек регулятора МИК-111 приведена на рисунке 4.1.

Рисунок 4.1 - Диаграмма режимов работы, защиты и настроек регулятора МИК-111

Регулятор переходит в режим «РОБОТА» всякий раз, когда включается питание.

В процессе работы можно осуществлять мониторинг, т.е. визуально отслеживать измеряемую величину, заданную точку и значение дискретного управляющего воздействия на светодиодных индикаторах или значения выхода ПИД-регулятора в процентах при нажатии клавиши [▲] "больше" или [▼] "меньше"(в ручном режиме этими клавишами изменяется управляющие воздействие). Кроме того, можно отслеживать на светодиодных индикаторах сигналы технологической сигнализации при превышении верхнего и нижнего пределов отклонения.

4.6.1 Изменение режима управления регулятора

В регуляторе МИК-111 имеется два режима управления объектом регулирования:

- автоматический режим управление,
- ручной режим управление.

Режим управление регулятора - автоматический или ручной является *запоминаемым состоянием*. После включения питания регулятор находится в том режиме, в котором он находился на момент отключения.

Автоматический режим управление. Переход на ручной режим управление

<u>Автоматический</u> режим управление

• В автоматическом режиме управление регулятор управляет объектом регулирования согласно выбранному закону регулирования и с соответствующими настройками пользователя.

О руч

• В автоматическом режиме управление индикатор РУЧ на передней панели погашен.

☞ [*****]

• Для перехода в ручной режим управления необходимо нажать клавишу [🖑] на передней панели регулятора.

• Индикатор РУЧ на передней панели начинает мигать.

• Если оператор нажал клавишу [�] в процессе мигания индикатора РУЧ (приблизительно 3-4 секунды) – произойдет фиксация выбранного режима и регулятор перейдет в режим ручного управления, индикатор РУЧ будет светиться — что будет в дальнейшем указывать на ручной режим управление.

Уровень защиты

• Если оператор *не подтверждает* своих действий нажатием клавиши [♥], то данные действия оператора воспринимаются как неверное действие или случайное переключение режима управление.

Ручной режим управление. Переход на автоматический режим управление

Ручной режим управление

• В ручном режиме управление оператор с передней панели с помощью клавиш [▲] "больше" и [▼] "меньше", управляет выходом регулятора, тем самым формирует значение управляющего воздействия, подаваемое на исполнительный механизм.

• Индикатор РУЧ на передней панели светится.

☞ [쒯]

• Для перехода в автоматический режим управления необходимо нажать клавишу [*] на передней панели регулятора.

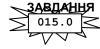
• Индикатор РУЧ на передней панели начинает мигать, если оператор нажал клавишу [#] в процессе мигания индикатора РУЧ (приблизительно 3-4 секунды) — произойдет фиксация выбранного режима и регулятор перейдет в режим автоматического управления, индикатор РУЧ погаснет — что будет в дальнейшем указывать на автоматический режим управление.

ℱ [ಈ]**О** РУЧ

• Если оператор *не подтверждает* своих действий нажатием клавиши [�], то данные действия оператора воспринимаются как неверное действие или случайное переключение режима управление.

Уровень защиты

4.6.2 Изменение значения заданной точки


При включении регулятора МИК-111 устанавливается режим РАБОТА. На дисплей **ПАРАМЕТР** выводится значение измеряемой величины, а на дисплей **ЗАВДАННЯ** — значение заданной точки.

Заданная точка изменяется с передней панели регулятора. При кратковременном нажатии клавиши [**O**] на дисплее **ЗАВДАННЯ** выводится значение заданной точки в мигающим виде, что означает вход в режим изменения задания. Значение заданной точки является *запоминаемым значением*. После включения питания регулятор начинает работу с тем значением заданной точки, которое было на момент отключения.

Заданная точка используется только в автоматическом режиме управления, но изменять ее возможно как в ручном (если используется динамическая балансировка), так и в автоматическом режиме. Задание устанавливается пользователем и используется при работе регуляторов (уровень **CTRL**).

Изменение значения заданной точки

♣ [Q]

- ኇ [▲] ኇ [▼]
- **☞** [ଐ]
- ЗАВДАННЯ

Уровень защиты

020.0

- Для изменения значения заданной точки необходимо кратковременно нажать клавишу $[\bullet]$.
- Дисплей ЗАВДАННЯ начнет мигать. На данном этапе при мигающем дисплее ЗАВДАННЯ возможно изменение значения заданной точки.
- С передней панели с помощью клавиш [▲] "больше" и [▼] "меньше", установить необходимое значение заданной точки, индицируемой на дисплее **ЗАВДАННЯ**.
- Если оператор нажал клавишу [⋪] в процессе мигания дисплей **ЗАВДАННЯ** (приблизительно 3-4 секунды) регулятор перейдет на режим управления с новым значением внутренней заданной точки.
- Дисплей ЗАВДАННЯ перестает мигать и светится ровным светом
- Если оператор *не подтверждает* своих действий нажатием клавиши [⋪] в процессе дисплея **ЗАВДАННЯ** (приблизительно 3-4 секунды), то данные действия оператора воспринимаются как неверное действие или случайное изменение значения.

Примечание

Клавиша [О] работает как отмена введенных значений и выхода из режима изменения задания.

Режимы изменения и переключения заданной точки

Очень важным для нормальной работы регуляторов является наличие в них *безударного (плавного)* переключения или изменения заданной точки. Переключение или изменение заданной точки регулятора МИК-111 происходит в случаях:

- переключение регулятора с ручного режима управление на автоматический;
- изменение значения внутренней заданной точки с передней панели регулятора или по интерфейсу;

Переключение или изменение заданной точки регулятора **обеспечивается с помощью** статической и динамической балансировки узла задатчика регулятора.

В зависимости от значений параметров меню конфигурации [CTRL.02] – скорость динамической балансировки задания в регуляторе МИК-111 есть разные режимы статической и динамической балансировки:

- 1 режим: [CTRL.02]=0 статическая балансировка,
- **2 режим**: [CTRL.02]≠0 динамическая балансировка.

Функциональная схема работы балансировок показана на рисунке 4.2. Функции режимов статической и динамической балансировки показаны в таблице 4.1.

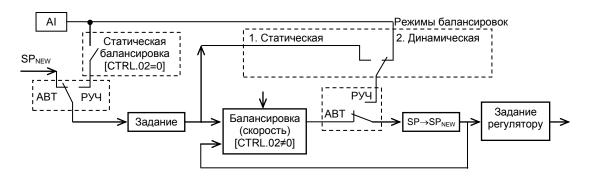


Рисунок 4.2 - Функциональная схема балансировок регулятора МИК-111

Примечание. На схеме условно показано положение переключателей для автоматического режима управление регулятора и динамической балансировки.

Таблица 4.1 - Функции режимов балансировок регулятора МИК-111

	Режим балансировки	Значение параметров [CTRL.02]	Динамика изменения заданной точки
Переключение режима	статическая	=0	При переключении SP= AI
управление РУЧНОЙ- АВТОМАТ	динамическая	≠0	При переключении задание начинает изменятся от значения входа AI1 до установленного значения задания со скоростью балансировки [CTRL.02]
Изменение заданой точки (с	статическая	=0	При изменении задание мгновенно меняется от его предыдущего значения до установленного
передней панели или по интерфейсу)	динамическая	≠0	При изменении задание начинает изменяться от его предыдущего значения до установленного значения со скоростью балансировки [CRTL.02]

Примечание. Если значение [CTRL.02]≠0, то значение скорости динамической балансировки устанавливается в пределах [1; 999,9] тех.ед./мин.

4.6.3 Изменение значения управляющего воздействия

руч

ም [▲] ም [▼] необходимо перевести в ручной режим управления — см. раздел 4.6.1. Индикатор РУЧ на передней панели светится. Выбран ручной режим управления.

• В ручном режиме управление оператор с передней панели с помощью клавиш [▲]

"больше" и [▼] "меньше", управляет выходом регулятора, тем самым формирует значение управляющего воздействия, подаваемое на исполнительный механизм через ключи БОЛЬШЕ-МЕНЬШЕ или аналоговый выход, в зависимости от выбранного типа регулятора (см. параметр [CTRL.00]).

• Для изменения значения управляющего воздействия регулятор должен находиться в ручном режиме управления. Если регулятор находится в автоматическом режиме, его

ЗАВДАННЯ20.00

• При изменении значения управляющего воздействия после первого нажатия любой из клавиш [▲] "больше" или [▼] "меньше" на дисплей ЗАВДАННЯ вместо значения задания выводится значения выхода регулятора в мигающем виде, а также светодиодные индикаторы ▲ или ▼ указывают оператору какой параметр (сигнал) в данный момент изменяется.

ЗАВДАННЯ40.0

• После окончания изменения значения управляющего воздействия, отпусканием клавиши [▲] "больше" или [▼] "меньше" по истечении 3-4 секунд дисплей ЗАВДАННЯ перестает мигать и на него выводится значения задания, а значение выхода фиксируется в энергонезависимой памяти.

4.7 Режим КОНФИГУРИРОВАНИЕ

- С помощью этого режима вводят параметры и константы регулятора, параметры типа входа, фильтра, типа управления, сигнализации отклонений, выходов, калибровки, параметры сетевого обмена и записи параметров.
- Параметры разделены по группам, каждая из которых называется "уровень". Каждое заданное значение (элемент настройки) в этих уровнях называется "параметром". Параметры, используемые в регуляторе МИК-111, сгруппированы в 13 уровней и представлены на диаграмме см. рис 4.3. Индикация уровней режима конфигурации, номеров и значений параметров показаны на рис. 4.4.

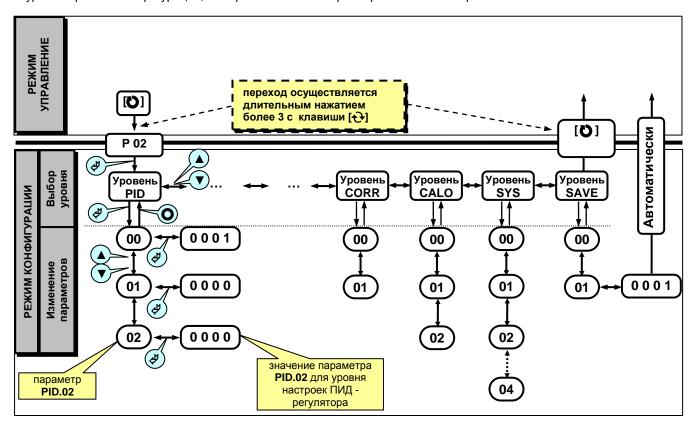


Рисунок 4.3 - Диаграмма режима конфигурации и настроек.

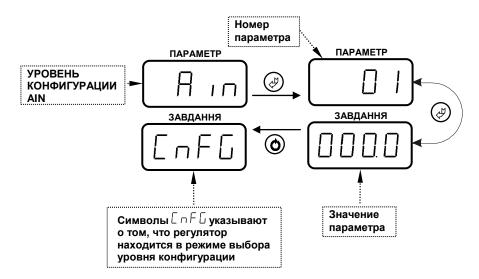


Рисунок 4.4 – Индикация уровня режима конфигурации, номера параметра и значения параметра.

4.7.1 Переход в режим конфигурации и настроек

- 1. Вызов уровня конфигурации и настроек осуществляется из режима РАБОТА длительным, более 3-х секунд, нажатием клавиши [�].
 - 2. После этого на дисплей ПАРАМЕТР выводится меню ввода пароля: «Р 00».
- 3. С помощью клавиш программирования [▲],[▼] ввести пароль: «Р 02» и кратковременно нажать клавишу [ေ].

ВНИМАНИЕ!

Если пароль введен не верно – регулятор перейдет в *режим РАБОТА*. Если пароль введен верно - то регулятор перейдет в *режим КОНФИГУРАЦИИ*.

Режим конфигурации отличается от режима индикации тем, что на дисплее ЗАВДАННЯ выводятся символы $\Box \cap \vdash \Box$ и значения параметров выводятся на цифровой дисплей в $\underline{mueaющem}$ режиме.

- 4. На цифровом дисплее появится название уровня конфигурации: AIN...SAVE «Я то I»...«5 ЯшЕ».
- 5. После выбора нужного уровня нужно нажать кратковременно клавишу подтверждения [].
- 6. Выбрав необходимый пункт меню клавишами ▲ ▼, для модификации параметра необходимо снова кратковременно нажать клавишу [ᢞ].
- 7. На цифровом дисплее в <u>мигающем</u> режиме выведется значение параметра выбранного пункта меню: например, «**0001**».
- 8. С помощью клавиш программирования ▲ ▼, при необходимости, произвести изменение значения выбранного параметра, кратковременно нажать клавишу [�] регулятор снова перейдет в режим конфигурации на цифровом дисплее появится номер прежнего выбранного пункта меню.
- 9. С помощью клавиш программирования ▲ ▼ установить следующий необходимый для изменения пункт меню, и т.д. пока все необходимые параметры на данном уровне режима конфигурации не будут изменены.
 - 10. Для того, чтобы вернутся к выбору уровня конфигурации необходимо нажать клавишу [©].
- 11. Далее выбрать следующей уровень режима конфигурации, который нужно изменить. Повторить пункт 5 –10. И так до тех пор, пока не будут изменены все нужные уровни конфигурации.
- 12. Вызвать уровень SAVE «5 fl u E» и сохранить все измененные значения в энергонезависимой памяти. При сохранении параметров в энергонезависимой памяти выход из уровня конфигурации осуществляется автоматически.
- 13. Если измененные параметры не нужно сохранять в энергонезависимой памяти, выход из режима конфигурации осуществляется длительным, более 3-х секунд, нажатием клавиши [•] или по истечении времени 2-х минут (параметры сохранятся в оперативной памяти).

4.7.2 Назначение уровней конфигурации, выбор уровня конфигурации

Таблица 4.2 - Индикация номера уровня конфигурации

Назначение УРОВНЯ	Название	Индикация
Настройка параметров ПИД регулятора	PID	Pid
Настройка параметров блока преобразования аналогового входного сигнала AI	AIN	A In
Настройка параметров аналогового выхода АО	АОТ	Rot.
Конфигурация выходного устройства DO1	DOT1	dot I
Конфигурация выходного устройства DO2	DOT2	9ºF5
Настройка параметров регулятора	CTRL	[Erl.
Абсциссы (X) опорных точек линеаризации	LNRX	
Ординаты (У) опорных точек линеаризации	LNRY	
Калибровка аналогового входа AI	CALI	
Коррекция аналогового входа AI	CORR	[orr
Калибровка аналогового выхода АО	CALO	
Общие параметры	SYS	545
Сохранение параметров	SAVE	SAuE.

В дальнейшем по тексту руководства по эксплуатации идет ссылка на параметр из таблицы параметров регулятора в виде XXX.УУ (например AIN.01), где XXX – название уровня конфигурации, а УУ – номер параметра (смотри рисунок 4.4).

4.7.3 Выбор параметров

Для выбора параметров на каждом уровне конфигурации необходимо нажимать клавишу [▲] или
 [▼]. При каждом нажатии клавиши [▲] или [▼] происходит переход к следующему или предыдущему параметру

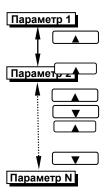


Рисунок 4.5 - Диаграмма выбора параметров на каждом уровне

4.7.4 Изменения и фиксирование значений

- Чтобы изменить значения параметров пользуйтесь клавишами [▲] или [▼], а затем нажмите клавишу [ေ≱]. В результате значения будут зафиксированы.
- Если на уровне изменения настроек был вызван параметр для модификации и не нажималась ни одна из клавиш в течение около 2-х минут, регулятор перейдет в режим РАБОТА. Даже если параметр был модифицирован и не нажималась клавиша [�], то в течение около 2-х минут, регулятор перейдет в режим РАБОТА и изменение не будет зафиксировано.
- *Необходимо помнить*, что после изменения значения необходимо произвести запись в энергонезависимую память (см. раздел 4.7.5), в противном случае введенная информация не будет сохранена при отключении питания регулятора.

4.7.5 Уровень разрешения конфигурирования регулятора по сети ModBus. Запись параметров в энергонезависимую память

Конфигурирование регулятора производится как с передней панели регулятора, так и по сети ModBus. Через интерфейс конфигурирование производится с помощью программного приложения МИК-конфигуратор (распространяется бесплатно) или через SCADA систему.

Для того чтобы избежать не санкционированного изменения параметров конфигурации через интерфейс существует *уровень защиты* доступа к регистрам конфигурации. Запретить или позволить доступ к этим регистрам можно с верхнего уровня, а также в меню конфигурации регулятора.

Разрешения конфигурирования по сети ModBus разрешается на верхнем уровне устанавливанием в регистре 18 значения «1». Если в этом регистре находится «0», то конфигурирование на верхнем уровне запрещено.

С регулятора разрешение программирования осуществляется на уровне конфигурации SAVE.00.

Параметр SAVE.00. Разрешение конфигурирования регулятора по сети ModBus

Значение параметра SAVE.00	Выполняемая операция
0000	Для изменения доступны только регистры оперативного управления (1 – 12, 18). Конфигурационные регистры (19 – 111) доступны только для чтения.
0001	Разрешение конфигурирования. Конфигурирование регулятора осуществляется с передней панели регулятора и по интерфейсу.

Параметр SAVE. 01. Запись параметров в энергонезависимую память

Значение параметра SAVE.01	Выполняемая операция					
0000	Запись параметров в энергонезависимую память не производится					
0001	Запись параметров в энергонезависимую память <i>производится</i> следующим образом:					
	1) Произвести модификацию всех необходимых параметров.					
	2) Установить значение параметра SAVE.01 = 0001.					
	3) Нажать клавишу [ダ].					
	4) На дисплее ПАРАМЕТР появятся символы "5月 ப Е", указывая о том, что происходит операция записи в энергонезависимую память.					
	5) После указанных операций будет произведена запись всех модифицированных параметров в энергонезависимую память. После проведения записи параметров регулятор перейдет в режим РАБОТА. После записи параметр SAVE.01 автоматически устанавливается в 0000.					

4.8 Порядок настройки аналогового входа и аналогового выхода

При настройке и перестройке с одного типа входного сигнала на другой тип, необходимо привести в соответствие следующее:

- параметры меню конфигурации, отвечающие типу входного сигнала,
- положения перемычек на плате процессора (установленном внутри регулятора). Типы входных сигналов, и положения перемычек приведены в таблице 4.3.

Таблица 4.3 – Положения перемычек для разных типов входных сигналов

Тип входного сигнала	Параметр меню	Положение пер	емычек на плате			
тип влодного омпала	конфигурации	процессора (рис.4.6.а)				
Аналоговый вход Al						
От 0 мА до 5 мА	AIN.00=0001	JP1 [1-2], [7-8]	J1 [3-4], J2 [5-6]			
От 0 мА до 20 мА, Rвх=100 Ом	AIN.00=0001	JP1 [1-2], [5-6]	J1 [3-4], J2 [5-6]			
От 4 мА до 20 мА, Rвх=100 Ом	AIN.00=0001	JP1 [1-2], [5-6]	J1 [3-4], J2 [5-6]			
От 0В до 10В,	AIN.00=0001	JP1 [2-4], [5-7]	J1 [3-4], J2 [5-6]			
От 0 мВ до 75 мВ	AIN.00=0001	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
От 0 мВ до 200 мВ	AIN.00=0001	JP1 [1-2], [5-7]	J1 [3-4], J2 [3-4]			
От 0 В до 2 В	AIN.00=0001	JP1 [1-2], [5-7]	J1 [3-4], J2 [5-6]			
TCM 50M, от минус 50°C до плюс 200°C	AIN.00=0003	JP1 [1-2], [5-7]	J1 [1-2], J2 [3-4]			
TCM 100M, от минус 50°C до плюс 200°C	AIN.00=0004	JP1 [1-2], [5-7]	J1 [1-2], J2 [3-4]			
TCM гр.23, от минус 50°C до плюс 180°C	AIN.00=0005	JP1 [1-2], [5-7]	J1 [1-2], J2 [3-4]			
ТСП 50П, Pt50, от минус 50°С до плюс 650°С	AIN.00=0006	JP1 [1-2], [5-7]	J1 [1-2], J2 [3-4]			
ТСП 100П,Pt100, от минус 50°С до плюс 650°С	AIN.00=0007	JP1 [1-2], [5-7]	J1 [1-2], J2 [3-4]			
ТСП гр.21, от минус 50°С до плюс 650°С	AIN.00=0008	JP1 [1-2], [5-7]	J1 [1-2], J2 [3-4]			
ТЖК (J), от 0°С до плюс 1100°С	AIN.00=0011	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
ТХК (L), от 0°C до плюс 800°C	AIN.00=0012	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
ТХКн (E), от 0°С до плюс 850°С	AIN.00=0013	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
ТХА (K), от 0°С до плюс 1300°С	AIN.00=0014	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
ТПП10 (S), от 0°С до плюс 1600°С	AIN.00=0015	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
ТПР (B), от 0°С до плюс 1800°С	AIN.00=0016	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			
ТВР (A-1), от 0°С до плюс 2500°С	AIN.00=0017	JP1 [1-2], [5-7]	J1 [3-4], J2 [1-2]			

Примечания.

- 1. Смещение входного сигнала 4-20мА устанавливается программно.
- 2. Характеристики типов входных сигналов приведены в разделе 5.
- 3. Порядок калибровки входных аналоговых сигналов приведен в разделе 5.

При настройке и перестройке с одного типа выходного сигнала на другой тип, необходимо привести в соответствие положение перемычки на модуле аналогового выхода (установленном внутри регулятора). Типы выходных сигналов, и положения перемычки приведены в таблице 4.4.

Таблица 4.4 - Положения перемычек для разных типов выходных сигналов

Тип выходного сигнала	Код выхода при заказе регулятора	Положение перемычки на модуле аналогового выхода (рис.4.6.б)			
Аналоговый выход АО					
0-5 мА	1	J1 [2-3]			
0-20 мА, Rвх<100 Ом	2	J1 [1-2]			
4-20 мА, Rвх<100 Ом	3	J1 [1-2]			

Примечания.

- 1. Порядок калибровки выходного аналогового сигнала приведен в разделе 5.
- 2. При необходимости настройки аналогового выхода на сигнал 0 В 10 В, установки перемычек и калибровка производится на сигнал 0 мА 20 мА, а на разъем параллельно клеммам, впаивается нормирующий резистор 499 Ом.

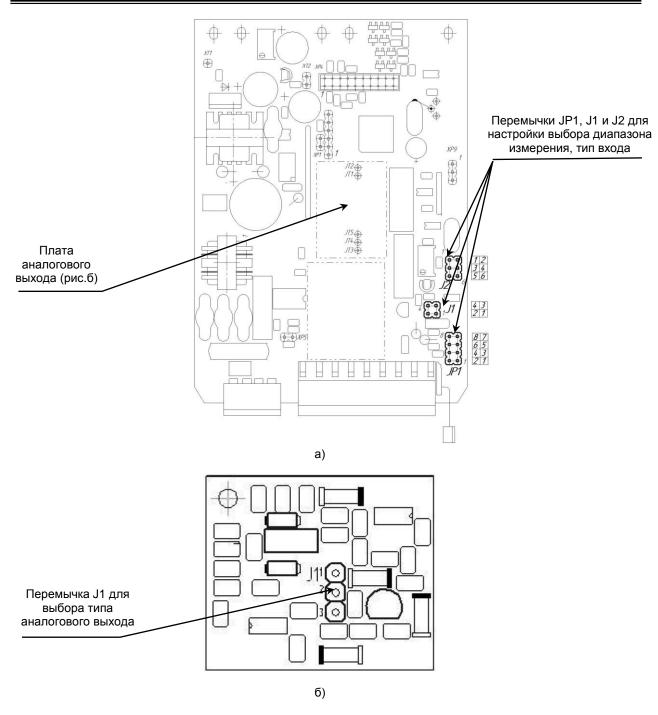


Рисунок 4.6 – Положение перемычек на плате процессора а) основная плата процессора; б) плата аналогового выхода.

4.9 Передаточная функция ПИД-регулятора

Регулятор МИК-111 построен таким образом, что в процессе работы в каждый момент времени \mathbf{t} на выходе регулятора будет формироваться воздействие $\mathbf{Y}(\mathbf{t})$ в зависимости от входного сигнала регулятора $\mathbf{E}(\mathbf{t})$ – рассогласование между входным параметром \mathbf{PV} и заданием регулятора \mathbf{SP} .

Зависимость между входным сигналом регулятора **E(t)** и выходным **Y(t)** определяет передаточная функция регулятора. Алгоритм преобразования регулятора содержит три составляющие регулятора: пропорциональная (**П**-составляющая), интегральная (**И**-составляющая) и дифференциальная (**Д**-составляющая).

В МИК-111 используется параллельная структура **ПИД**-регулятора. Алгоритмическая схема работы ПИД-регулятора параллельной структуры показана на рисунке 4.7.

Согласно рисунку 4.7 для параллельной структуры регулятора передаточная функция имеет вид:

$$Y(t) = Kp \cdot E(t) + \frac{1}{T_i} \int_0^t E(t) dt + T_d \frac{dE(t)}{dt},$$

где K_p – коэффициент пропорциональности регулятора (параметр меню конфигурации [PID.00]), T_i – время интегрирования регулятора (параметр меню конфигурации [PID.01]), $T_{\mathcal{I}}$ – время дифференцирования регулятора (параметр меню конфигурации [PID.02]).

Рисунок 4.7 – Параллельная структура ПИД регулятора

4.10 Ручная установка параметров регулирования по переходной функции объекта регулирования

Если задана переходная функция объекта регулирования или она может быть определена, то параметры регулирования могут быть установлены согласно установочным директивам, указанным в справочниках. Переходная функция в положении регулятора «Ручной режим» может быть записана через скачкообразное изменение управляющего воздействия и характер регулируемой величины может регистрироваться самописцем. При этом получается переходная функция, приблизительно соответствующая указанной на рисунке 4.8.

Хорошие средние величины из установочных параметров регулятора дают следующие эмпирические формулы:

П - регулятор:

Коэффициент усиления $Kp \approx L / [D * K_O]$

ПИ - регулятор:

Коэффициент усиления Kp \approx 0,8 * (L / [D * K_O]) Время интегрирования $T_{\text{N}} \approx$ 3 * D

ПИД - регулятор:

Коэффициент усиления Kp \approx 1,2 * (L / [D * K_O])

Время интегрирования $T_{\text{И}} \approx D$

Время дифференцирования T_D ≈ 0,4 * D

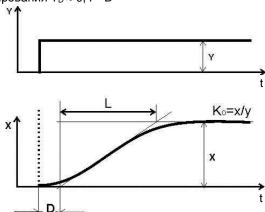


Рисунок 4.8 - Переходная функция объекта регулирования с самовыравниванием

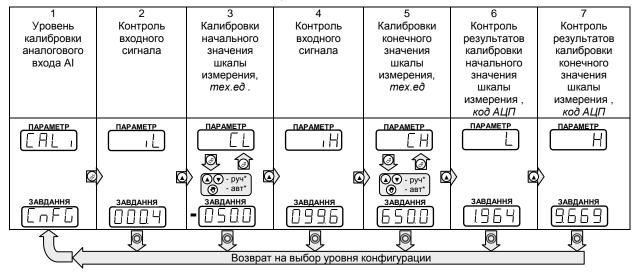
- Ү управляющее воздействие
- у управляющее воздействие
- х регулируемая величина
- t время
- D время задержки
- L время выравнивания
- K_O передаточный коэффициент объекта регулирования.

5 Калибровка и проверка регулятора

Калибровка регулятора осуществляется:

- На заводе-изготовителе при выпуске регулятора
- Пользователем:
 - при смене типа датчика
 - при подготовке к поверке (калибровке).

5.1 Калибровка аналоговых входов


5.1.1 Порядок калибровки унифицированных входов

В режиме конфигурации установите параметры соответствующие:

- Типу шкалы аналогового входа
- Типу аналогового входа
- Положение децимального разделителя
- Нижний предел размаха шкалы
- Верхний предел размаха шкалы

После подготовки регулятора к операции калибровки (конфигурации параметров AIN.00-AIN.03, установления соответствующих перемычек на плате процессора) производится калибровка в последовательности, представленной в таблице 5.1:

Таблица 5.1 – Последовательность калибровки аналогового входа

^{* -} клавишами 🛦 🔻 производится ручная калибровка, а клавишей 🖑 - автоматическая калибровка

5.1.2 Порядок калибровки аналогового входа для подключения датчиков с выходным сигналом постоянного тока

- 1. В меню конфигурации установить выбранный тип датчика (AIN.00), нижний и верхний предел размаха шкалы (AIN.01 и AIN.02) и положение децимального разделителя (AIN.03). Подключить к аналоговому входу AI регулятора МИК-111 образцовый источник постоянного тока согласно схемы подключения представленной на рис. Б.1. Выбрать уровень калибровки аналогового входа CLI.
- 2. Режим контроля еходного сигнала для калибровки начального значения шкалы измерения. Выбор осуществляется нажатием клавиши [섇] с индикацией IL на дисплее ПАРАМЕТР. Задать значение входного сигнала 0 мА (или 4 мА), в зависимости от типа сигнала, и проконтролировать на дисплее ЗАВДАННЯ сигнал АЦП, который будет соответствовать нижнему пределу (АІ). Если значение входного сигнала находится в диапазоне от -005.0% до +025.0%, то нажатием клавиши [▲] перейти в режим калибровки нижнего придела шкалы CL. Если значение аналогового входа выходит за указанный диапазон, то калибровка не может быть проведена и при попытке ее проведения на дисплее ЗАВДАННЯ появится сообщение Err.C. В этом случае следует проверить подключения входного сигнала, установки перемычек на плате регулятора, а также тип выбранного датчика в пункте AIN.00 и еще раз проконтролировать входной сигнал.
- 3. Режим калибровки начального значения шкалы измерения. Выбор осуществляется нажатием клавиши [▲] с индикацией СL на дисплее ПАРАМЕТР. Возможны два варианта калибровки:

- ручная калибровка осуществляется нажатием клавиш [▲] или [▼] контролируя значения измеряемой переменной на дисплее ПАРАМЕТР
- автоматическая осуществляется нажатием клавиши [♥]. Поочередное мигание индикаторов "MIN"-"MAX" свидетельствует о переходе в режим автоматической калибровки, которую можно отменить повторным нажатием клавиши [♥] или выполнить нажатием клавиши [♥], о чем будет свидетельствовать установившееся начальное значение и прекратится мигание "MIN"-"MAX". При этом в параметре AI (регистр 103) зафиксируется значение нижнего предела сигнала АЦП.
 - 4. Режим контроля сигнала для калибровки конечного значения шкалы измерения.

Выбор осуществляется клавишей [♣] с индикацией IH на дисплее ПАРАМЕТР. Задать значение входного сигнала 5 мА (или 20 мА) в зависимости от типа сигнала и проконтролировать на дисплее ЗАВДАННЯ сигнал АЦП, который будет соответствовать верхнему пределу (Al_н). Если это значение находится в диапазоне от 090.0% до +110.0%, то нажатием клавиши [▲] перейти в режим калибровки конечного значения шкалы CH. Если значение аналогового входа выходит за указанный диапазон, то калибровка не может бить проведена и при попытке ее проведения на дисплее ЗАВДАННЯ появится сообщение Err.C. В этом случае следует проверить подключения входного сигнала, на плате регулятора, а также тип выбранного датчика в пункте AIN.00 и еще раз проконтролировать входной сигнал в пункте IH.

5. Режим калибровки конечного значения шкалы измерения.

Калибровка производится аналогично п.3., с установившимся конечным значением. При этом в параметре AI, (регистр 104) фиксируется значение верхнего предела сигнала АЦП.

6. Режим контроля параметров калибровки.

Выбор осуществляется клавишей [▲] с индикацией соответственно L — контроль нижнего предела сигнала АЦП, Н — контроль верхнего предела сигнала АЦП. При этом контролируемые параметры калибровки должны находится в диапазоне указанном в таблице 5.2 для данного типа датчика.

7. Нажатием клавиши **[О]** вернутся в меню конфигурации регулятора и произвести запись параметров калибровки (см. раздел 4.7.5), в противном случае введенная информация не будет сохранена при отключении питания регулятора.

Необходимо помнить, что после проведения калибровки необходимо произвести запись параметров в энергонезависимую память, в противном случае введенная информация не будет сохранена при отключении питания регулятора.

ЗАМЕЧАНИЯ ПО ОПЕРАЦИЯМ КАЛИБРОВКИ

В процессе ручной калибровки не требуется точного равенства сигналов 0% и 100% диапазона. Например, можно проводить калибровку для сигналов 2% и 98% диапазона. Важно лишь то, чтобы по цифровому индикатору установить значение, максимально близкое к установленному значению входного сигнала.

Для повышения точности измерения входных аналоговых сигналов допускается калибровку производить для всей цепи преобразования сигнала с учетом вторичных преобразователей сигналов.

Например, для входной цепи: *датичк – преобразователь – регулятор МИК-111* источник образцового сигнала подключается вместо датчика, а операция калибровки входного сигнала производится на регуляторе МИК-111.

5.1.3 Порядок калибровки аналогового входа для подключения датчиков термометров сопротивления

Порядок калибровки входов для подключения датчиков термометров сопротивления ТСМ 50М:

- 1. В параметрах конфигурации, AIN установить: Градировочная характеристика аналогового входа AI1 AIN.00 = 0003
- 2. Подключить магазин сопротивлений МСР-63 (или аналогичный регулятор с аналогичными характеристиками) к входу AI вместо подключаемого датчика термопреобразователя сопротивления согласно схеме внешних соединений (см. приложение Б.1).
- 3. На магазине сопротивлений установить значение сопротивления для выбранного типа датчика **39,22 Ом**, соответствующее начальному значению. Нажать клавишу [*∛*]. См. таблицу 5.1.
- 4. В режиме конфигурации установите параметр CL " Калибровка начального значения шкалы измерения ". Нажимая клавиши [▲] или [▼] установите на дисплее значение, соответствующее значению нижнего предела шкалы при калибровке "-50,0°C". Нажмите клавишу [❖].
 - 5. Выбрать параметр СН " Калибровка конечного значения шкалы измерения ".

- 6. На магазине сопротивлений установите конечное значение сопротивления при калибровке для выбранного типа датчика **92,77 Ом**.
- 7. Нажимая клавиши [▲] или [▼] установите на дисплее значение, соответствующее конечному значению шкалы при калибровке "200,0 °C". Нажмите клавишу [ေЎ].

8. Режим контроля параметров калибровки.

Выбор осуществляется клавишей [▲] с индикацией соответственно L — контроль нижнего предела сигнала АЦП, Н — контроль верхнего предела сигнала АЦП. При этом контролируемые параметры калибровки должны находиться в диапазоне указанном в таблице 5.2 для данного типа датчика.

5.1.4 Калибровка аналогового входа для термоэлектрических преобразователей

Для термопар при калибровке установить тип термопары. К клеммам калибрируемого аналогового входа подключить калибратор напряжения, например дифференциальный вольтметр В1-12 или аналогичный регулятор с аналогичными характеристиками. Далее калибровать аналоговой вход аналогично термометрам сопротивления, устанавливая начальные и конечные значения напряжений, которые соответствуют начальному и конечному значению шкалы выбранной термопары (см. таблицу 5.3).

5.1.5 Таблица диапазонов минимальных и максимальных значений аналогового сигнала в коде АЦП

Таблица 5.2 – Диапазоны минимальных и максимальных значений аналогового сигнала в коде АЦП

Код входа		Тип датчика		отображаются на уровне калибровки параметрах AIN.09 и AIN.10)
			Минимальное	Максимальное
		от 0 мА до 5 мА	1.400 – 2.400	14.50 – 21.00
	Пинейная	OT 0 MA TO 20 MA	1.400 – 2.400	14.50 – 21.00
		от 4 мА до 20 мА	4.000 - 5.000	14.50 – 21.00
0001	eχ	от 0 В до10 В	1.400 – 2.400	14.50 – 21.00
	풀	от 0 В до 2 В	1.400 – 2.400	14.50 – 21.00
		от 0мВ до 75 мВ	1.400 – 2.400	18.30 – 21.00
		от 0мВ до 200 мВ	1.400 – 2.400	13.00 – 14.50
		от 0 мА до 5 мА	1.400 – 2.400	14.50 – 21.00
	Квадратичная	от 0 мА до 20 мА	1.400 – 2.400	14.50 – 21.00
	₹	от 4 мА до 20 мА	4.000 - 5.000	14.50 – 21.00
0002	l È	от 0 В до10 В	1.400 – 2.400	14.50 – 21.00
	4 <u>6</u>	от 0 В до 2 В	1.400 – 2.400	14.50 – 21.00
	Ba	от 0мВ до 75 мВ	1.400 – 2.400	18.30 – 21.00
	~	от 0мВ до 200 мВ	1.400 – 2.400	13.00 – 14.50
0003	TCN	7 50M	1.500 – 2.500	4.800 - 6.000
0004	TCN	/ 100M	3.900 – 4.900	10.40 – 11.60
0005	TCN	Л Гр.23	1.700 – 2.700	4.800 - 5.900
	ТСГ	1 50П	1.600 – 2.600	9.200 – 10.50
0006	Pt50), α = 0,00390	1.600 – 2.600	9.200 – 10.50
	Pt50), α = 0,00392	1.600 – 2.600	9.200 - 10.50
		1 100Π	4.000 - 5.000	19.30 – 20.70
0007	Pt10	00, α = 0,00390	4.000 - 5.000	19.30 – 20.70
	Pt10	00, α = 0,00392	4.200 – 5.200	19.30 – 20.70
8000	TCF	1 Гр.21	1.400 – 2.400	8.400 - 9.700
	_	от 0 мА до 5 мА	1.400 – 2.400	14.50 – 21.00
	Р	от 0 мА до 20 мА	1.400 – 2.400	14.50 – 21.00
	BaH	от 4 мА до 20 мА	4.000 - 5.000	14.50 – 21.00
0009	Пинеаризованная	от 0 В до10 В	1.400 – 2.400	14.50 – 21.00
	api	от 0 В до 2 В	1.400 – 2.400	14.50 – 21.00
	Σ¥	от 0мВ до 75 мВ	1.400 – 2.400	18.30 – 21.00
		от 0мВ до 200 мВ	1.400 – 2.400	13.00 – 14.50
0011	ТЖІ		1.400 – 2.400	15.90 – 17.90
0012	TXK		1.400 – 2.400	16.40 – 17.90
0013		н (Е)	1.400 – 2.400	16.20 – 17.90
0014	TXA		1.400 – 2.400	13.20 – 14.60
0015		110 (S)	1.400 – 2.400	5.200 - 6.400
0016	ТПР		1.400 – 2.400	4.500 – 5.700
0017		P (A-1)	1.400 – 2.400	9.100 – 10.30
Датчик те	рмоко	мпенсации	0 – 0.100	0.500 - 1.000

5.1.6 Таблица типов датчиков и рекомендуемые пределы калибровки

Таблица 5.3 - Типы датчиков и рекомендуемые пределы калибровки

Код входа	Тип датчика, диапазон характеристика сигнала и НСХ		Предельные индицируемые значения при калибровке регулятора	Предельные значения входного сигнала при калибровке регулятора		
Параметр	Omnana			Начал. значение	Конечное значение	
0001	От 0 мА до 5 мА От 0 мА до 20 мА От 4 мА до 20 мА От 0В до 10 В От 0В до 2 В От 0мВ до 75мВ От 0мВ до 200мВ	Линейная	От 0,0 % до 100,0 % или в установленных технических единицах*	0 MA 0 MA 4 MA 0 B 0 B 0 MB 0 MB	5 MA 20 MA 20 MA 10 B 2 B 75 MB 200 MB	
0002	От 0 мА до 5 мА От 0 мА до 20 мА От 4 мА до 20 мА От 0В до 10 В От 0В до 2 В От 0мВ до 75мВ От 0мВ до 200мВ	Квадратичная (Вход калибруется как линейный, затем устанавливается квадратичная шкала)	От 0,0 % до 100,0 % или в установленных технических единицах*	0 MA 0 MA 4 MA 0 B 0 B 0 MB 0 MB	5 MA 20 MA 20 MA 10 B 2 B 75 MB 200 MB	
0003	TCM	50M, W ₁₀₀ =1,428	От минус 50,0 °C до плюс 200,0 °C	39,225 ом	92,775 ом	
0004	TCM	100M, W ₁₀₀ =1,428	От минус 50,0 °C до плюс 200,0 °C	78,450 ом	185,550 ом	
0005	TCM	Гр.23	От минус 50,0 °C до плюс 180,0 °C	41,710 ом	93,640 ом	
	ТСП	50Π, W ₁₀₀ =1,391	От минус 50,0 °C до плюс 650,0 °C	40,000 ом	166,615 ом	
0006	Pt	Pt50, α = 0,00390	От минус 50,0 °C до плюс 650,0 °C	40,025 ом	166,320 ом	
	Pt	Pt50, α = 0,00392	От минус 50,0 °C до плюс 650,0 °C	39,975 ом	166,910 ом	
0007	ТСП	100Π, W ₁₀₀ =1,391	От минус 50,0 °C до плюс 650,0 °C	80,000 ом	333,230 ом	
0007	Pt Pt	Pt100, α = 0,00390 Pt100, α = 0,00392	От минус 50,0 °C до плюс 650,0 °C	80,050 ом 79,950 ом	332,640 ом	
0008	ТСП	Γp.21, W ₁₀₀ =1,391	От минус 50,0 °C до плюс 650,0 °C От минус 50,0 °C до плюс 650,0 °C	79,930 ом 36,800 ом	333,820 ом 153,300 ом	
0009	ОТ 0 мА до 5 мА ОТ 0 мА до 20 мА ОТ 4 мА до 20 мА ОТ 0В до 10 В ОТ 0В до 2 В ОТ 0МВ до 75мВ ОТ 0МВ до 200мВ	Линеаризованная (Вход калибруется как линейный, затем устанавливается линеаризованная шкала, см. раздел 5.2)	От 0,0 % до 100,0 % или в установленных технических единицах	0 MA 0 MA 4 MA 0 B 0 B 0 MB	5 MA 20 MA 20 MA 10 B 2 B 75 MB 200 MB	
0010	Термопара	Линеаризованная Вход калибруется как линейный, затем устанавливается линеаризованная шкала, см. раздел 5.2)	диапазон термопары			
0011	Термопара ТЖК (J)	ТЖК (Ј)	От 0°С до плюс 1100°С	0 мВ	63,792 мВ	
0012	Термопара ТХК (L)	TXK (L)	От 0°С до плюс 800°С	0 мВ	66,442 мВ	
0013	Термопара ТХКн (E)	ТХКн (Е)	От 0°С до плюс 850°С	0 мВ	64,922 мВ	
0014	Термопара ТХА (K)	TXA (K)	От 0°С до плюс 1300°С	0 мВ	52,410 мВ	
0015	Термопара ТПП10 (S)	ТПП10 (S)	От 0°С до плюс 1600°С	0 мВ	16,777 мВ	
0016	Термопара ТПР (B)	ТПР (В)	От 0°С до плюс 1800°С	0 мВ	13,591 мВ	
	Термопара ТВР					

5.1.7 Коррекция показаний датчика термокомпенсации

Датчик термокомпенсации (вход температурной компенсации холодного спая термопар) установлен на тыльной стороне регулятора.

С помощью параметра **SYS.04** производится коррекция значения температуры датчика термокомпенсации. В данном меню цифровой дисплей ЗАВДАННЯ показывает значение температуры полученное от датчика термокомпенсации, то есть температуру среды, в которой находится возле клемм на тыльной стороне регулятора. При необходимости, откорректировать значения датчика термокомпенсации в параметре **SYS.04** с помощью клавиш программирования ▲ ▼.

Например, если реальная температура среды, в которой находится датчик 28,5°С, а в пункте **SYS.04** показывает 28,8°С, то необходимо клавишей [▼] уменьшить значение на дисплее ЗАВДАННЯ с 28,8 до 28,5. Нажать клавишу подтверждения [✔] и сохранить изменения в соответствующим пункте меню (см. раздел 4.7.5).

5.2 Линеаризация аналогового входа Al

Функция линеаризации подчинена аналогового входа АІ. Линеаризация дает возможность правильного физического представления нелинейных регулируемых и измеряемых параметров.

* С помощью линеаризации можно производить, например, калибровку емкостей в литрах, метрах кубических или килограммах продукта, в зависимости от измеренного входного сигнала уровня в емкости.

При индикации линеаризуемой величины входа AI, определяющими параметрами являются начальное и конечное значения шкалы (процентное отношение к диапазону измерения), положение децимального разделителя, а также эквидистантные опорные точки линеаризации. Кривая линеаризации имеет «переломления» в опорных точках.

5.2.1 Параметры линеаризации входа Al

Например, параметры линеаризации аналогового входа следующие:

Конфигурация аналогового входа AI

AIN.00	= 0009 – Тип шкалы аналогового входа AI - линеаризованная
AIN.06	Количество участков линеаризации входа AI
AIN.03	Положение децимального разделителя

Абсциссы опорных точек линеаризации входа AI

LNRX.00	Абсцисса начального значения (в % от входного сигнала)
LNRX.01	Абсцисса 01-го участка
LNRX.02	Абсцисса 02-го участка
 LNRX.18 LNRX.19	Абсцисса 18-го участка Абсцисса 19-го участка

Ординаты опорных точек линеаризации входа АІ

LNRY.00	Ордината начального значения (сигнал в тех. ед. от -9999 до 9999)
LNRY.01	Ордината 01-го участка
LNRY.02	Ордината 02-го участка
LNRY.18	Ордината 18-го участка
LNRY.19	Ордината 19-го участка

5.2.2 Определение опорных точек линеаризации

5.2.2.1 Определение количества опорных точек линеаризации

После определения необходимого количества участков линеаризации необходимо задать это значение в параметре **AIN.06**. Пределы изменения параметра **AIN.06** от 0000 до 0019.

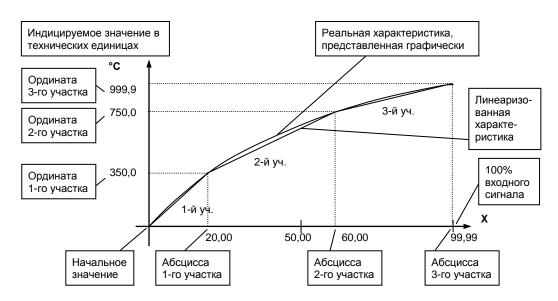
Выбор необходимого количества участков линеаризации производится из соображения обеспечения необходимой точности измерения.

5.2.2.2 Определение значений опорных точек линеаризации

Для каждого значения индицируемого входного сигнала Yi (в технических единицах от –9999 до 9999 с учетом децимального разделителя) вычислить соответствующую физическую величину из соответствующих функциональных (градуировочных) таблиц или графически из соответствующей кривой (при необходимости интерполировать) и задать значение для соответствующей опорной величины входного физического сигнала Xi (в %, от 00,00% до 99,99%). Соответствующие значения Xi (в %, от 00,00% до 99,99%) вводятся в параметрах на уровне LNRX.):

Абсциссы опорных точек линеаризации входа AI

LNRX.00	Абсцисса начального значения (в % от входного сигнала)
LNRX.01	Абсцисса 01-го участка
LNRX.02	Абсцисса 02-го участка
LNRX.18	Абсцисса 18-го участка
LNRX.19	Абсцисса 19-го участка


Соответствующие значения Yi (в технических единицах от минус 9999 до 9999 с учетом децимального разделителя) вводятся в параметрах:

Ординаты опорных точек линеаризации входа AI

LNRY.00	Ордината начального значения (сигнал в тех. ед. от минус 9999 до 9999)
LNRY.01	Ордината 01-го участка
LNRY.02	Ордината 02-го участка
 LNRY.18 LNRY.19	Ордината 18-го участка Ордината 19-го участка

5.2.3 Примеры линеаризации сигналов

Пример 1. Линеаризация сигнала, подаваемого на вход AI, представленная графически (кривой)

Конфигурируемые параметры для примера 1:

AIN.00 = 0009	LNRX.00 = 00,00	LNRY.00 = 0000 (индицируется «000,0»)
AIN.06 = 0003	LNRX.01 = 20,00	LNRY.01 = 3500 (индицируется «350,0»)
AIN.03 = 000,0	LNRX.02 = 60,00	LNRY.02 = 7500 (индицируется «750,0»)
	LNRX.03 = 99,99	LNRY.03 = 9999 (индицируется «999,9»)

Пример 2. Линеаризация сигнала, подаваемого на вход AI, представленная градуировочной таблицей

Линеаризация сигнала снимаемого с термопары градуировки ТПП, и подаваемого на вход AI, диапазон измеряемых температур $0 - 1400^{\circ}$ C, диапазон входного сигнала 0 - 14,315 мВ (0 - 100%).

Для обеспечения необходимой точности измерения выбираем 20 участков линеаризации и расчитанные значения в % входного сигнала для каждой опорной точки вводятся в соответствующий параметр.

Конфигурируемые параметры для примера 2:

AIN.00 = 0009	Тип шкалы второго блока - линеаризованная
AIN.06 = 0019	Количество участков линеаризации
AIN.03 = 0000,	Положение децимального разделителя

Параметры конфигурации рассчитываются и вводятся согласно таблице 5.4.

Таблица 5.4 – Расчет и ввод параметров линеаризации примера 2

					Іараметры конфигурации			
Номер опорной точки	Значение измеряемой температуры, °C	Значение входного сигнала в мВ	Ординаты опорных точек линеаризации второго блока		Абсциссы опорных точек линеаризации второго блока			
			Номер параметра	Вводимое значение, °С	Номер параметра	Вводимое значение, %		
0	0	0,000	LNY2.00	0000	LNX2.00	00,00		
1	50	0,297	LNY2.01	0050	LNX2.01	02,07		
2	100	0,644	LNY2.02	0100	LNX2.02	04,50		
3	150	1,026	LNY2.03	0150	LNX2.03	07,17		
4	200	1,436	LNY2.04	0200	LNX2.04	10,03		
5	250	1,852	LNY2.05	0250	LNX2.05	12,99		
6	300	2,314	LNY2.06	0300	LNX2.06	16,16		
7	350	2,761	LNY2.07	0350	LNX2.07	19,32		
8	400	3,250	LNY2.08	0400	LNX2.08	22,70		
9	450	3,703	LNY2.09	0450	LNX2.09	25,97		
10	500	4,216	LNY2.10	0500	LNX2.10	29,45		
11	550	4,689	LNY2.11	0550	LNX2.11	32,84		
12	600	5,218	LNY2.12	0600	LNX2.12	36,45		
13	700	6,253	LNY2.13	0700	LNX2.13	43,68		
14	800	7,317	LNY2.14	0800	LNX2.14	51,11		
15	900	8,416	LNY2.15	0900	LNX2.15	58,79		
16	1000	9,550	LNY2.16	1000	LNX2.16	66,71		
17	1100	10,714	LNY2.17	1100	LNX2.17	74,84		
18	1300	13,107	LNY2.18	1300	LNX2.18	91,56		
19	1400	14,315	LNY2.19	1400	LNX2.19	99,99		

5.3 Калибровка аналогового выхода

Перед началом калибровки аналогового выхода необходимо привести в соответствие положение перемычки на модуле аналогового выхода (установленном внутри регулятора). Типы выходных сигналов и положение перемычкек приведены в таблице 4.3.

Уровень калибровки аналогового выхода имеет три параметра. Параметр **CALO.00** используется для индикации аналогового выхода в %. Если регулятор МИК-111 находится в ручном режиме, то в этом пункте можна также производить изменения состояния аналогового выхода АО.

Пункты CALO.01 и CALO.02 используются для калибровки начального и конечного значения шкалы аналогового выхода. Порядок калибровки следующий:

- 1. Подключите к аналоговому выходу АО регулятора МИК-111 образцовый измерительный регулятор миллиамперметр постоянного тока.
- 2. В режиме конфигурации установите параметр **CALO.01** "Калибровка начального значения аналогового выхода AO".
- 3. Нажимая клавиши [▲] или [▼] установите величину выходного сигнала по миллиамперметру равную 0 мА (или 4 мА), соответствующую 0% диапазона, в зависимости от исполнения типа сигнала.
 - 4. Нажать клавишу [생].
 - 5. Установить параметр CALO.02 "Калибровка конечного значения аналогового выхода АО"
- 6. Нажимая клавиши [▲] или [▼] установите величину выходного сигнала по миллиамперметру равную 5 мА (или 20 мА), соответствующую 100% диапазона, в зависимости от исполнения типа сигнала.
 - Нажать клавишу [♥].
 - 8. Автоматически установится параметр **CALO.02** "Тест аналогового выхода АО".
 - 9. Нажмите клавишу [⋪].

Необходимо помнить, что после проведения калибровки необходимо произвести запись параметров в энергонезависимую память (см. раздел 4.7.5), в противном случае введенная информация не будет сохранена при отключении питания регулятора.

6 Техническое обслуживание

6.1 Общие указания

- 6.1.1 Техническое обслуживание комплекс работ, которые проводятся периодически в плановом порядке на работоспособном блоке с целью предотвращения отказам, продления его срока службы за счет выявления и устранения предотказного состояния для поддержания нормальных условий эксплуатации.
- 6.1.2 Техническое обслуживание заключается в проведении работ по контролю технического состояния и последующему устранению недостатков, выявленных в процессе контроля; профилактическому обслуживанию, выполняемому с установленной периодичностью, длительностью и в определенном порядке; устранению отказов, выполнение которых возможно силами персонала, выполняющего техническое обслуживание.

6.2 Меры безопасности

- 6.2.1 Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!
- 6.2.2 Для обеспечения безопасного использования оборудования неукоснительно выполняйте указания данной главы!
- 6.2.3 К эксплуатации регулятора допускаются лица, имеющие разрешение для работы на электроустановках напряжением до 1000 В и изучившие руководство по эксплуатации в полном объеме.
- 6.2.4 Эксплуатация регулятора разрешается при наличии инструкции по технике безопасности, утвержденной предприятием-потребителем в установленном порядке и учитывающей специфику применения регулятора на конкретном объекте. При эксплуатации необходимо соблюдать требования действующих правил ПТЭ и ПТБ для электроустановок напряжением до 1000В.
- 6.2.5 Все монтажные и профилактические работы должны проводиться при отключенном электропитании.
 - 6.2.6 Запрещается подключать и отключать соединители при включенном электропитании.
- 6.2.7 Тщательно производите подключение с соблюдением полярности выводов. Неправильное подключение или подключение разъемов при включенном питании может привести к повреждению электронных компонентов регулятора.
 - 6.2.8 Не подключайте неиспользуемые выводы.
- 6.2.9 При разборке регулятора для устранения неисправностей регулятор должен быть отключен от сети электропитания.
- 6.2.10 При извлечении регулятора из корпуса не прикасайтесь к его электрическим компонентам и не подвергайте внутренние узлы и части ударам.
- 6.2.11 Располагайте регулятор как можно далее от устройств, генерирующих высокочастотные излучение (например, ВЧ-печи, ВЧ-сварочные аппараты, машины, или приборы, использующие импульсные напряжения) во избежание сбоев в работе.

6.3 Порядок технического обслуживания

- 6.3.1 В зависимости от регулярности проведения техническое обслуживание должно быть:
- а) периодическим, которое выполняется через календарные промежутки времени;
- б) адаптивным, которое выполняется по необходимости, то есть, в зависимости от фактического состояния регулятора и наличия свободного обслуживающего персонала.
 - 6.3.2 Устанавливаются такие виды технического обслуживания:
- а) техническое обслуживание при хранении, которое заключается в переконсервации регулятора при достижении предельного срока консервации во время хранения в соответствии с требованиями эксплуатационной документации;
- б) техническое обслуживание при транспортировке, которое заключается в подготовке регулятора к транспортированию, демонтаже из технологического оборудования и упаковке перед транспортированием;

- в) техническое обслуживание при эксплуатации, которое заключается в подготовке регулятора перед вводом в эксплуатацию, в процессе ее эксплуатации и в периодической проверке работоспособности регулятора.
- 6.3.3 Периодическое техническое обслуживание при эксплуатации регулятора устанавливается потребителем с учетом интенсивности и условий эксплуатации, но не реже чем один раз в год. Для регуляторов МИК-111 целесообразна ежеквартальная периодичность технического обслуживания при эксплуатации.
 - 6.3.4 Периодическое обслуживание должно проводиться в следующем порядке:
 - а) провести работы, которые выполняются при техническом осмотре;
 - б) проверить сопротивление изоляции;
 - в) проверить работоспособность регулятора.
- 6.3.5 Технический осмотр регулятора выполняется обслуживающим персоналом в следующем порядке:
- а) перед началом смены следует провести внешний осмотр регулятора. Особое внимание следует обратить на чистоту поверхности, маркировку и отсутствие механических повреждений.
 - б) проверить надежность крепления регулятора;
- в) проверить техническое состояние проводов (кабелей) на целостность и защищенность от механических повреждений.

7 Хранение и транспортирование

7.1 Условия хранения регулятора

- 7.1.1 Срок хранения в потребительской таре не меньше 1 года.
- 7.1.2 Регулятор должно храниться в сухом и вентилируемом помещении при температуре окружающего воздуха от минус 40°C до плюс 70°C и относительной влажности от 30 до 80% (без конденсации влаги). Данные требования являются рекомендуемыми.
- 7.1.3 Воздух в помещении не должен содержать пыли и примеси агрессивных паров и газов, вызывающих коррозию (в частности: газов, содержащих сернистые соединения или аммиак).
- 7.1.4 В процессе хранении или эксплуатации не кладите тяжелые предметы на регулятор и не подвергайте его никакому механическому воздействию, так как устройство может деформироваться и повредиться.

7.2 Требования к транспортированию регулятора и условия, при которых оно должно осуществляться

- 7.2.1 Транспортирование регулятора в упаковке предприятия-изготовителя осуществляется всеми видами транспорта в крытых транспортных средствах. Транспортирование самолетами должна выполняться только в отапливаемых герметизированных отсеках.
- 7.2.2 Регулятор должен транспортироваться в климатических условиях, которые соответствуют условиям хранения 5 согласно ГОСТ 15150, но при давлении не ниже 35,6 кПа и температуре не ниже минус 40 °C или в условиях 3 при морских перевозках.
- 7.2.3 Во время погрузо-разгрузочных работ и транспортировании запакованный регулятор не должен подвергаться резким ударам и влиянию атмосферных осадков. Способ размещения на транспортном средстве должен исключать перемещение регулятора.
- 7.2.4 Перед распаковыванием после транспортирования при отрицательной температуре регулятор необходимо выдержать в течение 3 часов в условиях хранения 1 согласно ГОСТ 15150.

8 Гарантии изготовителя

- 8.1 Производитель гарантирует соответствие регулятора техническим условиям ТУ У 33.2-13647695-003:2006. При не соблюдении потребителем требований условий транспортирования, хранения, монтажа, наладки и эксплуатации, указанных в настоящем руководстве, потребитель лишается права на гарантию.
- 8.2 Гарантийный срок эксплуатации 5 лет со дня отгрузки регулятора. Гарантийный срок эксплуатации изделий, которые поставляются на экспорт 18 месяцев со дня проследования их через государственную границу Украины.
- 8.3 По договоренности с потребителем предприятие-изготовитель осуществляет послегарантийное техническое обслуживание, техническую поддержку и технические консультации по всем видам своей продукции.

ПРИЛОЖЕНИЯ

Приложение A - Габаритные и присоединительные размеры

Размеры цифровых индикаторов (дисплеев):

ПАРАМЕТР, ЗАВДАННЯ

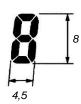
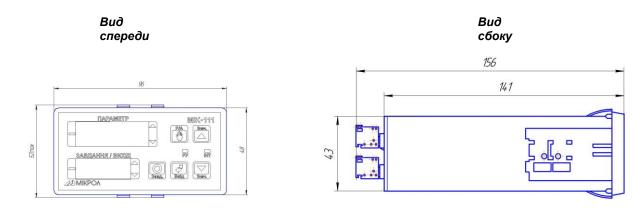



Рисунок А.1 – Внешний вид и размеры цифровых индикаторов регулятора МИК-111

Рекомендуемая толщина щита от 1 до 5 мм.

Рисунок А.2 - Габаритные размеры регулятора МИК-111

Разметка отверстий на щите

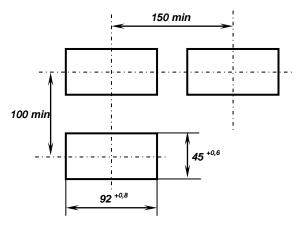
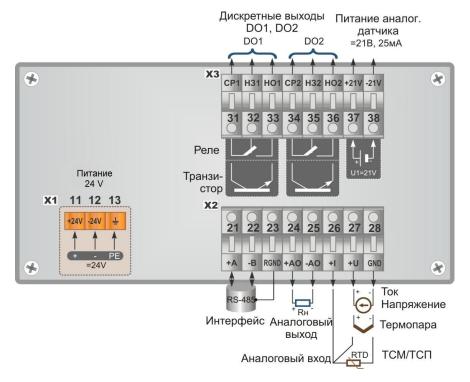
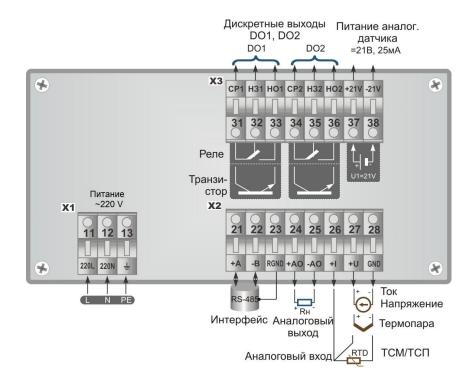
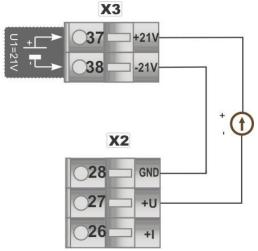




Рисунок А.3 - Разметка отверстий на щите

Приложение Б - Подключение регулятора. Схемы внешних соединений

а) исполнения на 24В



б) исполнения на ~220В

Рисунок Б.1 - Подключение внешних цепей к регулятору МИК-111

Приложение Б.1 Подключение аналоговых датчиков с пассивными выходами

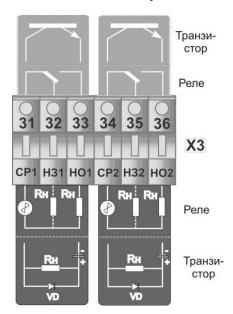
Питание аналог. датчика =21В, 25мА

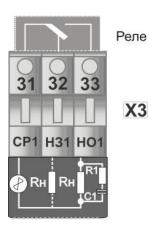
Аналоговый вход

Рисунок Б.2 - Подключение к регулятору МИК-111 аналоговых датчиков с пассивными выходами

Примечание. Положения перемычек для настройки аналоговых входов приведены в таблице 4.3.

Приложение Б.2 Подключение дискретных нагрузок




Рисунок Б.3 - Подключение индуктивных нагрузок к регулятору МИК-111

Примечания.

При подключении индуктивных нагрузок (реле, пускатели, контакторы, соленоиды и т.п.) к дискретным транзисторным выходам контроллера во избежание выхода из строя выходного транзистора изза большого тока самоиндукции параллельно нагрузке (обмотке реле) необходимо устанавливать блокирующий диод VD – см. схему подключения. Внешний диод устанавливать на каждом канале, к которому подключена индуктивная нагрузка.

Тип устанавливаемого диода КД209, КД258, 1N4004...1N4007 или аналогичный, рассчитанный на обратное напряжение 100В, прямой ток 0,5A.

Рекомендации по подключению индуктивной нагрузки для механического реле.

где, R1 резистор МЛТ-1-39 Ом-5%;

С1 конденсатор К73-17-630В-0,1-0,5 мкФ-10%;

Rн индуктивная нагрузка.

Рисунок Б.4 - Схема подключения индуктивной нагрузки для механического реле

Примечания.

- 1. На рисунке Б.4 условно показано расположение и назначение замыкающих контактов механического реле каналов DO1 DO2.
 - 2. Максимально допустимое напряжение и максимально допустимый ток:
 - до 250В (8А) переменного тока при резистивной нагрузке;
 - до 250B (3A) переменного тока при индуктивной нагрузке (cosφ=0,4);
 - от 5 В (10мА) до 30 В(5А) постоянного тока при резистивной нагрузке.

Приложение Б.3 Схема подключения интерфейса RS-485

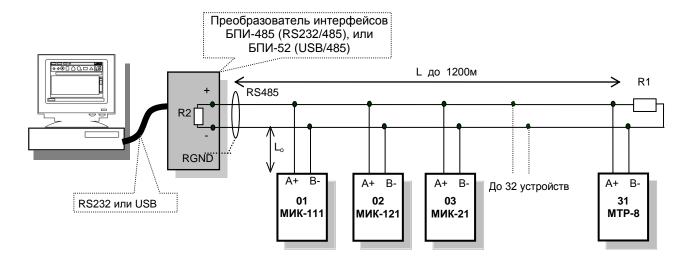


Рисунок Б.5 - Организация интерфейсной связи между компьютером и регуляторами

- 1. К одному порту COM или USB компьютера может быть подключено до 32 устройств, включая преобразователь интерфейсов БПИ-485 (БПИ-52).
- 2. Общая длина кабельной линии связи не должна превышать 1200м.
- 3. В качестве кабельной линии связи предпочтительно использовать экранированную витую пару.
- 4. Длина ответвлений L₀ должна быть как можно меньшей.
- 5. К интерфейсным входам, расположеным в крайних точках соединительной линии необходимо подключить два терминальных резистора сопротивлением 120 Ом (R1 и R2). Подключение резисторов к регуляторам № 01 30 не требуется. Подключение терминальных резисторов в блоке преобразования интерфейсов БПИ-485 (БПИ-52) смотри в РЭ на БПИ-485 (БПИ-52). Подключение терминальних резисторов в МИК –111 смотри приложение Б.3 (рисунок Б.5).

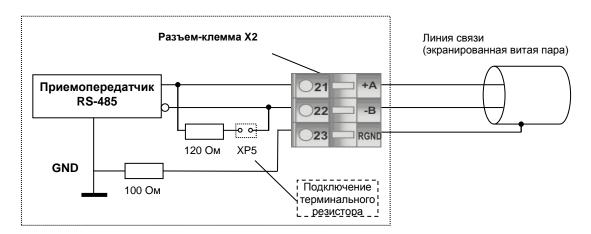


Рисунок Б.6 - Рекомендуемая схема подключения интерфейса RS-485

Приложение В - Коммуникационные функции

Приложение В.1 Общие сведения

Микропроцессорный регулятор МИК-111 обеспечивает выполнение коммуникационной функции по интерфейсу RS-485, позволяющей контролировать и модифицировать его параметры при помощи внешнего устройства (компьютера, микропроцессорной системы управления).

Интерфейс предназначен для конфигурирования регулятора, для использования в качестве удаленного устройства при работе в современных сетях управления и сбора информации (приема-передачи команд и данных), SCADA системах и т.п.

Протоколом связи по интерфейсу RS-485 является протокол Modbus режим RTU (Remote Terminal Unit).

Для работы необходимо настроить коммуникационные характеристики регулятора МИК-111 таким образом, чтобы они совпадали с настройками обмена данными главного компьютера. Характеристики сетевого обмена настраиваются на УРОВНЕ **SYS** конфигурации.

При обмене по интерфейсному каналу связи, если происходит передача данных от регулятора в сеть, на передней панели регулятора мигает индикатор **IHT**.

Программно доступные регистры регулятора МИК-111 приведены в таблице В.1 раздела В.1.

Доступ к регистрам оперативного управления № 0-18 разрешен постоянно.

Доступ к регистрам программирования и конфигурации № 19-111 разрешается в случае установки «1» в регистре разрешения программирования № 18, которое возможно осуществить как с передней панели регулятора МИК-111, так и с персональной ЭВМ.

Количество запрашиваемых регистров не должно превышать 16. Если в кадре запроса заказано более 16 регистров, регулятор МИК-111 в ответе ограничивает их количество до первых 16-ти регистров.

При программировании с ЭВМ необходимо контролировать диапазоны изменения значений параметров, указанные в таблице В.1 раздела В.1.

Для обеспечения минимального времени реакции на запрос от ЭВМ в регуляторе существует параметр – SYS.02. «Тайм-аут кадра запроса в системных тактах регулятора 1 такт = 250 мкс». Минимально возможные тайм-ауты для различных скоростей следующие:

Скорость, бит/с	Время передачи кадра запроса, мсек	Тайм-аут, в системных тактах 1 такт = 250 мкс (Т _{ime out} [с.т.])
2400	36,25	145
4800	18,13	73
9600	9,06	37
14400	6,04	25
19200	4,53	19
28800	3,02	13
38400	2,27	10
57600	1,51	7
76800	1,13	5
115200	0,76	4
230400	0,38	3
460800	0,2	2
921600	0,1	1

Время передачи кадра запроса - пакета из 8-ми байт определяется соотношением (где: один передаваемый байт = 1 старт бит+ 8 бит + 1стоп бит = 10 бит):

Если наблюдаются частые сбои при передаче данных от регулятора, то необходимо увеличить значение его тайм-аута, но при этом учесть, что необходимо увеличить время повторного запроса от ЭВМ, т.к. всегда время повторного запроса должно быть больше тайм-аута регулятора.

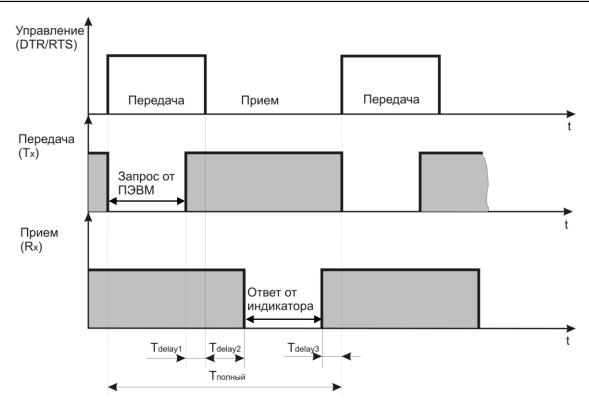


Рисунок В.1 - Временные диаграммы управления передачей и приемом блока интерфейсов БПИ-485 (БПИ-52)

T_{delay1} – задержка на автоматическое переключение БПИ-485 (БПИ-52) на прием данных. Она составляет время передачи одного байта.

 $T_{
m delay2}$ — время реакции устройства на запрос данных. $T_{
m delay3}$ — задержка на передачу последнего байта из буфера в линию.

Тполный – минимальное время ответа.

Пример расчета полного времени запроса – ответа для скорости 115200 бит/с.

Время передачи кадра запроса и кадра ответа при скорости 115 кбит/с составит 0,76 мсек.

 $T_{передачи} = 0,76$ мс ($T_{out} = 4$ системных такта = 1 мс)

Полное время кадра запроса – ответа:

 $T_{\text{полный}} = T_{TX} + T_{\text{delay}} + T_{RX} + T_{\text{delay.}} = 0.76 + 3 + 0.76 + 1 = 6$ мс.

Итак, за 1 секунду можно опросить регистров:

N = 1000 mc / 6 mc + 10 = 176.

Приложение В.2 Программно доступные регистры регулятора МИК-111

Таблица В.2 – Программно доступные регистры регулятора МИК-111

Функцион альный код операции		Формат данных	Пункт меню	истры регулятора мик-111 Наименование параметра	Диапазон изменения (десятичные значения)
03	0	SHORT	SYS.03	Регистр идентификации регулятора : Мл.байт - код (модель) регулятора 11 DEC, Ст.байт - версия прогр. обеспечения 08 DEC	20 60 DEC (значение регистра) 08 0C HEX (по-байтно) 08 11 DEC (по-байтно)
03 / 06	1	SHORT	Передняя панель	Значение аналогового входа AI, параметр	От минус 9999 до 9999
03 / 06	2, 3	BYTE	Выходы DO	Состояние дискретных выходов DO1, DO2	0 – отключен, 1 – включен
03 / 06	4	SHORT	Передняя панель	Значение управляющего воздействия, подаваемого на аналоговый выход АО регулятора	От 000,0 до 099,9 ²⁾
03 / 06	5	BYTE	Передняя панель	Режим работы регулятора	0– ручной, 1– автоматич.
03 / 06	6	SHORT	Передняя панель	Заданная точка	От минус 9999 до 9999
03 / 06	7	SHORT		Управление перемещением импульсного исполнительного механизма	-100 – 100%
03 / 06	8	SHORT		Положение механизма	От 0000 до 0999
03 / 06	9	SHORT	PID.00	Коэффициент усиления	От 000,1 до 050,0 ²⁾
03 / 06	10	SHORT	PID.01	Время интегрирования	От 0000 до 6000
03 / 06	11	SHORT	PID.02	Время дифференцирования	От 0000 до 6000
03 / 06	12			Резерв	
03	13			Резерв	
03	14	BYTE		Обобщенная сигнализация	0 - норм, 1 – сигнализация
03	15			Резерв	
03	16			Резерв	
03	17			Резерв	
03 / 06	18	BYTE	SAVE.00	Разрешение изменения регистров	0 – запрещено, 1 – разрешено изменения конфигурационных регистров,
03 / 06	19	SHORT	AIN.00	Тип шкалы	От 0000 до 0017
03 / 06	20	SHORT	AIN.01	Нижний предел размаха шкалы	От минус 9999 до 9999
03 / 06	21	SHORT	AIN.02	Верхний предел размаха шкалы	От минус 9999 до 9999
03 / 06	22	SHORT	AIN.03	Положение децимального разделителя]	0 – «XXXX», 1 – «XXX,X», 2 – «XX,XX», 3 – «X,XXX»
03 / 06	23	SHORT	AIN.04	Постоянная времени цифрового фильтра	От 000,0 до 060,0 ²⁾
03 / 06	24	SHORT	AIN.05	Максимальная длительность импульсной помехи	От 000,0 до 005,0 ²⁾
03 / 06	25	BYTE	AIN.07	Метод температурной коррекции входного сигнала от термопары	0 – ручная 1 – автоматическая
03 / 06	26	SHORT	AIN.08	Значение температуры в режиме ручной коррекции входного сигнала от термопары	От минус 099,9 до 999,9 ²⁾
03 / 06	27	SHORT	CORR.01	Коэффициент коррекции (смещение)	От минус 9999 до 9999
03 / 06	28, 29	SHORT	DOT1.00 DOT2.00	Логика работы выходных устройств DO1, DO2	От 0000 до 0006
03 / 06	30, 31			Резерв	
03 / 06	32, 33	SHORT	DOT1.01 DOT2.01	Длительность импульса выходных устройств DO1 и DO2	000,0 ²⁾ – статический 000,1–999,9 ²⁾ – импульсный
03 / 06	34, 35	SHORT	DOT1.02 DOT2.02	Уставка MIN DO1, DO2	В диапазоне шкалы выбранного типа датчика
03 / 06	36, 37	SHORT	DOT1.03 DOT2.03	Уставка MAX DO1, DO2	В диапазоне шкалы выбранного типа датчика
03 / 06	38, 39	SHORT	DOT1.04 DOT2.04	Гистерезис выходного устройства DO1, DO2	От минус 9999 до 9999
03 / 06	40, 41	SHORT	DOT1.05 DOT2.05	Безопасное положение выходного устройства DO1 и DO2 при обрыве датчика	0 – последнее положение 1 – откл. 2 – вкл.
03 / 06	42	SHORT	CTRL.00	Тип регулятора	От 0000 до 0004
03 / 06	43	BYTE	CTRL.01	Тип управления регулятора	0000 – обратное 0001 – прямое
03 / 06	44	SHORT	CTRL.02	Скорость динамической балансировки задания	От 0000 до 9999
03 / 06	45	SHORT	CTRL.03	Время механизма Тм, период ПИД-ШИМ	От 0000 до 9999
03 / 06	46	SHORT	CTRL.04	Минимальная длительность импульса Тмин	От 0000 до 9999
03 / 06	47	SHORT	CTRL.05	Задержка на включение DO в противоположном от 0000 до 9999 направлении	
				Зона нечувствительности 3-х позиционного	От 0000 до 9999

Таблица Е	Таблица В.2 – Программно доступные регистры регулятора МИК-111						
03 / 06	49	SHORT	CTRL.07	Гистерезис выходных устройств импульсного регулятора	От 000,0 до 090,0 ²⁾		
03 / 06	50	SHORT	CTRL.09	Ограничение МАХ аналоговой ячейки регулятора	От 000,0 до 109,9 ²⁾		
03 / 06	51	SHORT	CTRL.08	Ограничение MIN аналоговой ячейки регулятора	От минус 009,9 до 109,9 ²⁾		
				Безопасное положение выхода регулятора в	От 0000 до 0003		
03 / 06	52	SHORT	CTRL.10	случае отказа датчика, линии связи или			
				измерительного канала			
03 / 06	53	SHORT	CTRL.11	Значение безопасного положения,	От 000,0 до 099,9 ²⁾		
				устанавливаемое пользователем			
03 / 06	54	BYTE	CTRL.12	Тип технологической сигнализации	От 0000 до 0001		
03 / 06	55	SHORT	CTRL.13	Уставка техн. сигнализации "минимум"	От минус 9999 до 9999		
03 / 06	56	SHORT	CTRL.14	Уставка техн. сигнализации "максимум"	От минус 9999 до 9999		
03 / 06	57	SHORT	CTRL.15	Гистерезис технологической сигнализации	От 0000 до 9999		
				Источник аналогового сигнала для управления	От 0000 до 0002		
03 / 06	58	SHORT	AOT.00	аналоговым выходом АО (функция			
				ретрансмиссии)			
03 / 06	59	BYTE	AOT.01	Направление выходного сигнала АО	0-прямое; 1-обратное		
03 / 06	60	SHORT	SHORT AOT.02	Начальное значение входного сигнала равное	От минус 9999 до 9999		
				0% выходного сигнала	2 222		
03 / 06	61	SHORT	AOT.03	Конечное значение входного сигнала равное	От минус 9999 до 9999		
				100% выходного сигнала	0.0000 0040		
03 / 06	62	SHORT	AIN.06	Количество точек линеаризации	От 0000 до 0019		
03 / 06	63 –	SHORT	LNRX.00	Абсциссы опорных точек линеаризации	От 00,00 до 99,99 ²⁾		
	82		LNRX.19	аналогового входа AI	0 0000 0000		
03 / 06	83 –	SHORT	LNRY.00	Ординаты опорных точек линеаризации	От минус 9999 до 9999		
00 / 00	102	OLIODE	LNRY.19	аналогового входа AI	4500 0000		
03 / 06	103	SHORT	AIN.09	Минимальное значение входного сигнала АЦП	1500 – 6000		
03 / 06	104	SHORT	AIN.10	Максимальное значение входного сигнала АЦП	2000 – 22000		
03 / 06	105	SHORT	CALO.00	Значение калибровки начала шкалы выхода АО	От минус 9999 до 9999		
03 / 06	106	SHORT	CALO.01	Значение калибровки конца шкалы выхода АО	От минус 9999 до 9999		
03	107	SHORT	SYS.04	Значение коррекции показаний датчика	От минус 9999 до 9999		
				термокомпенсации			
03	108	011005		Служебная информация	1700 0000		
03	109	SHORT		Значение входного сигнала АЦП	1500 – 22000		
03	110	BYTE		Ошибка входа			
03	111	BYTE		Ошибка калибровки	Побитно		
03	112	BYTE		Ошибка пользователя при калибровке			
03	113	SHORT	SYS.02	Тайм-аут кадра запроса	От 0000 до 0200		
03	114	SHORT	SYS.00	Сетевой адрес	От 0000 до 0255		
03	115	SHORT	SYS.01	Скорость обмена	От 0000 до 0012		

Примечания.

- Регулятор МИК-111 обменивается данными по протоколу Modbus RTU в режиме "No Group Write" стандартный протокол без поддержки группового управления дискретными сигналами.
- 2. Данное число представлено в регистре целым без децимального разделителя (запятой). Например, если в параметре указано 60,0, то в регистре находится число 600.
- 3. Регистр 18 «Разрешение программирования», в случае установки его значения в «1», разрешает изменение конфигурационных регистров No 19-111. Установку «Разрешение программирования» можно осуществить с персональной ЭВМ или с передней панели регулятора (уровень SAVE.00). При наличии в 18 регистре «0» доступны для изменения только регистры оперативного управления 1-12, а остальные для чтения.

Приложение B.3 MODBUS протокол

В.3.1 Формат каждого байта, который принимается и передается приборами следующий:

1 start bit, 8 data bits, 1 Stop Bit (No Parity Bit) LSB (Least Significant bit) младший бит передается первым.

Кадр Modbus сообщения следующий:

DEVICE ADDRESS	FUNCTION CODE	DATA	CRC CHECK
8 BITS	8 BITS	k x 8 BITS	16 BITS

Где k≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, регулятор МИК-111 в ответе ограничивает их количество до первых 16-ти регистров.

B.3.2 Device Address. Адрес устройства

Адрес регулятора (slave-устройства) в сети (1-255), по которому обращается SCADA система (master-устройство) со своим запросом. Когда удаленный контроллер посылает свой ответ, он размещает этот же (собственный) адрес в этом поле, чтобы master-устройство знало какое slave-устройство отвечает на запрос.

B.3.3 Function Code. Функциональный код операции

МИК-111 поддерживает следующие функции:

Function Code	Функция
03	Чтение регистра(ов)
06	Запись в один регистр

В.3.4 Data Field. Поле передаваемых данных

Поле данных сообщения, посылаемого SCADA системой удаленному контроллеру содержит добавочною информацию, которая необходима slave-устройству для детализации функции. Она включает:

- начальный адрес регистра и количество регистров для функции 03 (чтение)
- адрес регистра и значенние этого регистра для функции 06 (запись).

Поле данных сообщения, посылаемого в ответ удаленным контроллером содержит:

- количество байт ответа на функцию 03 и содержимое запрашиваемых регистров
- адрес регистра и значенние этого регистра для функции 06.

В.3.5 CRC Check. Поле значения контрольной суммы

Значение этого поля - результат контроля с помощью циклического избыточного кода (Cyclical Redundancy Check -CRC).

После формирования сообщения (address, function code, data) передающее устройство рассчитывает CRC код и помещает его в конец сообщения. Приемное устройство рассчитывает CRC код принятого сообщения и сравнивает его с переданным CRC кодом. Если CRC код не совпадает, это означает что имеет место коммуникационная ошибка. Устройство не выполняет действий и не дает ответ в случае обнаружения CRC ошибки.

<u>Последовательность CRC расчетов:</u>

- 1. Загрузка CRC регистра (16 бит) единицами (FFFFh).
- 2. Исключающее ИЛИ с первыми 8 бит байта сообщения и содержимым CRC регистра.
- 3. Сдвиг результата на один бит вправо.
- 4. Если сдвигаемый бит = 1, исключающее ИЛИ содержимого регистра с A001h значением.
- 5. Если сдвигаемый бит нуль, повторить шаг 3.
- 6. Повторять шаги 3, 4 и 5 пока 8 сдвигов не будут иметь место.
- 7. Исключающее ИЛИ со следующими 8 бит байта сообщения и содержимым СКС регистра.
- 8. Повторять шаги от 3 до 7 пока все байты сообщения не обработаются.
- 9. Конечное содержимое регистра и будет значением контрольной суммы.

Когда CRC размещается в конце сообщения, младший байт CRC передается первым.

Приложение В.4 Формат команд

Чтение нескольких регистров. Read Multiple Register (03)

Следующий формат используется для передачи запросов от компьютера и ответов от удаленного устройства.

Запрос устройству SENT TO DEVICE:

DEVICE	FUNCTION	D	DATA					
ADDRESS	CODE 03	STARTING REGISTERS						
1 BYTE	1 BYTE	HB LB	HB LB	LB HB				

Ответ устройства. RETURNED FROM DEVICE:

DEVICE	FUNCTION		DATA					
ADDRESS	CODE 03	NUMBER FIRST N OF BYTES REGISTER REGIST						
1 BYTE	1 BYTE	1 BYTE	HB LB		HB LB	LB HB		

Где «NUMBER OF REGISTERS» и п ≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, регулятор МИК-111 в ответе ограничивает их количество до первых 16-ти регистров.

Пример 1:

1. Чтение регистра

Запрос устройству. SENT TO DEVICE: Address 1, Read (03) register 1 (Setpoint)

	DEVICE	FUNCTION	D.	CRC	
	ADDRESS	CODE	STARTING REGISTERS		
Π	01	03	00 01	00 01	D5 CA

Ответ устройства. RETURNED FROM DEVICE: Setpoint set to 100.0

DEVICE ADDRESS	FUNCTION CODE	NUMBER OF BYTES	VALUE OF REGISTERS	CRC
01	03	02	03 E8	B8 FA

03E8 Hex = 1000 Dec

2. Запись в регистр

Следующая команда записывает определенное значение в регистр. Write to Single Register (06)

Запрос и ответ устройства. Sent to/Return from device :

DEVICE	FUNCTION	D.	DATA			
ADDRESS	CODE 06	REGISTER	REGISTER DATA/ VALUE			
1 BYTE	1 BYTE	HB LB	HB LB	LB HB		

Пример 2:

Установить время дифференцирования регулятора 74 секунды в устройстве с адресом 20. Set Td to 74 sec (004A Hex) on Device address 20.

Запрос устройству. SEND TO DEVICE: Address 20 (Hex 14), write (06) to register 8, data 4A

DEVICE	FUNCTION	D.	CRC			
ADDRESS	CODE	REGISTER	REGISTER DATA/ VALUE			
14	06	00 08	00 4A	8B 3A		

Ответ устройства. RETURNED FROM DEVICE:

DEVICE	FUNCTION	D	CRC			
ADDRESS	CODE	REGISTER	REGISTER DATA/ VALUE			
14	06	00 08	00 4A	8B 3A		

Приложение В.5 Рекомендации по программированию обмена данными с регулятором МИК-111

В.5.1 При операциях ввода / вывода (с программным управлением DTR/RTS), необходимо удерживать сигнал DTR/RTS до окончания передачи кадра запроса. Для определения момента передачи последнего символа из буфера передачи СОМ порта рекомендуется использовать данную функцию: WaitForClearBuffer.

```
void WaitForClearBuf(void)
{
    byte Stat;

__asm
    {
        a1:mov dx,0x3FD
            in al,dx
            test al,0x20
            jz a1
        a2:in al,dx
            test al,0x40
            jz a2
     }
}
```

В.5.2 Кадр ответа от регулятора передается регулятором с задержкой 3 – 9 мс от момента принятия кадра запроса. Для ожидания кадра ответа не рекомендуется использовать WinApi: Sleep(), а использовать OVERLAPPED структуру и определять получение ответа от регулятора следующим кодом:

TimeOut – таймаут на получение ответа.

- В.5.3 После передачи кадра ответа регулятору необходима пауза =1мс для переключения в режим приема. Для ожидания также не рекомендуется использовать функцию WinApi Sleep().
 - В.5.4 Пример расчета контрольной суммы на языке СИ:

```
unsigned int crc_calculation (unsigned char *buff, unsigned char number_byte)
 unsigned int crc;
 unsigned char bit_counter;
 crc = 0xFFFF;
                                                       // initialize crc
 while ( number_byte>0 )
         crc ^= *buff++ ;
                                             // crc XOR with data
         bit_counter=0;
                                             // reset counter
         while (bit_counter < 8)
                if (crc & 0x0001)
                                    // shift to the right 1 position
                   crc >>= 1:
                   crc ^= 0xA001; // crc XOR with 0xA001
                 else
                     crc >>=1;
                                    // shift to the right 1 position
         bit_counter++;
                                             // increase counter
    number_byte--;
                                                       // adjust byte counter
 return (crc);
                                                       // final result of crc
}
```

Приложение В.6 Блок контроля ошибок

В системе возможны ошибки трех типов.

1) «Ошибка входа», когда входной сигнал выходит за пределы допустимого диапазона с последующей индикацией ErrL или ErrH на дисплее ПАРАМЕТР и соответственной установкой битов в регистре 110

2) «Ошибка калибровки» – параметры калибровки AI_L и/или AI_H выходят за допустимый диапазон. Контролируется на уровнях AIN.09 и AIN.10 для сравнения с данными таблицы 5.2 для соответствующего типа датчика. Возможная причина – неверно проведена калибровка.

Индикация данной ошибки возможна только в режиме КОНФИГУРАЦИЯ. При наличии соответственной ошибки включается соответственные индикаторы ▲ – верхний предел сигнала АЦП вне допустимого диапазона, ▼- нижний предел сигнала АЦП вне допустимого диапазона.

«Ошибка пользователя» при калибровке имеет место при попитке задать параметры, которые выходят за допустимый диапазон для данного типа входного сигнала. Идентифицируется сообщение ErrC на дисплее ПАРАМЕТР с установкой соответсвеного бита в регистре 112.

Бит MAN – соответствует ошибке при калибровке с передней панели, REM – соответствует попытке записи заведомо ошибочных параметров калибровки с верхеного уровня. Сообщение ErrC квитируется повторным нажатием клавиши [ኞ].

Возможные причины:

- отсутствие входного сигнала;
- несоответствие выбранного типа входного сигнала установленным перемычкам;
- не проводилась калибровка.

Приложение Г - Сводная таблица параметров регулятора МИК-111

Таблица Г.1 - Сводная таблица параметров регулятора МИК-111

Пункт меню	Параметр	Еди- ницы изме- рения	ов регулятора МИК-111 Диапазон изменения параметра	Значен. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	PID (₽	ਾਰ) Ha	астройка коэффицие	нтов ПИД	регуля	гора	
00	Коэффициент усиления ПИД регулятора	ед.	От 000,1 до 050,0	001,0	000,1	4.9	
01	Время интегрирования	сек.	От 0000 до 6000	0020	0001	-//-	0000 – откл.
02	Время дифференцирования	сек.	От 0000 до 6000	0000	0001	-//-	0000 – откл.
		тройка	а параметров блока г входного сигна		вания а	нал	огового
00	Тип аналогового входа		0000 – интерфейсный ввод 0001 – линейный 0002 – квадратический 0003 – ТСМ 50М 0004 – ТСМ 100М 0005 – гр.23 0006 – ТСП 50П, Рt50 0007 – ТСП 100П, Рt100 0008 – гр.21 0009 – линеаризованая шкала 0010 – Термопара линеаризированая 0011 – Термопара ТЖК (J) 0012 – Термопара ТХК (L) 0013 – Термопара ТХК (E) 0014 – Термопара ТХК (K) 0015 – Термопара ТКК (S)	0000	0001	4.8	
01	Нижний предел	техн.	0017 – Термопара ТВР (А-1) От минус 9999 до 9999	000,0	Младший разряд	4.8	
02	размаха шкалы Верхний предел размаха шкалы	ед. техн. ед.	От минус 9999 до 9999	0,000	Младший разряд	4.8	Если п.00 выбран в диапазоне 0006-0008,
03	Положение децимального разделителя	ед.	0000 000,1 00,02 0,003	0000	1	4.8	0011-0017 то значение этих пунктов изменить нельзя.
04	Постоянная времени цифрового фильтра	сек.	От 000,0 до 600,0	0,000	000,1	3. 7.1	000,0 — откл.
05	Максимальная длительность импульсной помехи	сек.	От 000,0 до 005,0			3. 7.1	Защита от импульсных помех
06	Количество участков линеаризации входа AI		От 0000 до 0019	0000	0001		
07	Метод температурной коррекции входных сигналов от термопар		0000 – ручная коррекция 0001 – автоматическая коррекция (по внешнему датчику термокомпенсации)	0001	0001		Т=Тизм+Ткор.руч (см.АIN.08) Т=Тизм+Ткор.авт
80	Значение температуры в режиме ручной коррекции входных сигналов от термопар	техн. ед.	От минус 999,9 до 999,9	000,0	000,1		Ткор.руч При AIN.07=0000
09	Минимальное значение входного сигнала АЦП	Код АЦП	От 1.000 до 22.00			5	
10	Минимальное значение входного сигнала АЦП	Код АЦП	От 1.000 до 22.00			5	
11	Контроль смещения аналогового входа	техн. ед.	От минус 999,9 до 999,9				Индуцирует значение параметра CORR.01
			онфигурация функци	и ретран	СМИССИІ	1 AO	
00	Источник аналогового сигнала для управления аналоговым выходом АО	-, 1-	0000 – измеряемая величина PV 0001 – отклонение 0002 – заданная точка SP	0000	0001	3.8	Отклонение вычисляется по формуле: PV-SP+(ВПШ-НПШ)/2, где ВПШ и НПШ соответственно верхний и нижний предел шкалы.
01	Направление выходного сигнала АО		0000 – прямое 0001 – обратное			3.9	0000 – AO=y 0001 – AO=100%-y

Продолжение таблицы Г.1 - Сводная таблица параметров регулятора МИК-111

Пункт меню	Параметр	Еди- ницы изме- рения	лица параметров регулятора М Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
02	Начальное значение входного сигнала равное 0% выходного сигнала	техн. ед.	От минус 9999 до 9999	0000	0001	3.9	С учетом децимального разделителя.
03	Конечное значение входного сигнала равное 100% выходного сигнала	техн. ед.	От минус 9999 до 9999	0100	0001	3.9	С учетом децимального разделителя.
	•	o	онфигурация выходн	ого уст	гройст	ва D	01
00	Логика работы выходного устройства DO1		0000 — интерфейсный вывод 0001 — больше МАХ 0002 — меньше МІN 0003 - в зоне МІN-МАХ 0004 - вне зоны МІN-МАХ (относительно МІN— МАХ соответствующего DO) 0005 — обобщенная сигнализация 0006 — не используется, выход			3. 10	(относительно MIN— MAX соответствующего DO);
01	Длительность импульса выходного устройства DO1	сек.	От 000,0 до 999,9	0,000	Млад- ший разряд	3. 10	000,0 - статический 000,1-999,9 - импульсный (динамический)
02	Уставка MIN DO1	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	020,0	000,1		С учетом децим. разделителя измеряемой величины
03	Уставка MAX DO1	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	080,0	000,1		С учетом децим. разделителя измеряемой величины
04	Гистерезис выходного устройства DO1	техн. ед.	От минус 999,9 до 99,99	000,5	Млад. разряд		
05	Безопасное положение выходного устройства DO1 в случае отказа датчика, линии связи или измерительного канала		0000 – последнее положение 0001 – откл. 0002 – вкл.	0000			
			онфигурация выходн	ого уст	ройст	ва D	O2
00	Логика работы выходного устройства DO2		0000 – интерфейсный вывод 0001 – больше МАХ 0002 – меньше МІN 0003 - в зоне МІN-МАХ 0004 - вне зоны МІN-МАХ (относительно МІN– МАХ соответствующего DO) 0005 – обобщенная сигнализация 0006 – не используется, выход откл			3. 10	(относительно MIN– MAX соответствующего DO);
01	Длительность импульса выходного устройства DO2	сек.	От 000,0 до 999,9	0,000	Млад- ший разряд	3. 10	000,0 - статический 000,1-999,9 - импульсный (динамический)
02	Уставка MIN DO2	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	020,0	000,1		С учетом децим. разделителя измеряемой величины
03	Уставка MAX DO2	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	080,0	000,1		С учетом децим. разделителя измеряемой величины
04	Гистерезис выходного устройства DO2	техн. ед.	От минус 999,9 до 999,9	000,5	Млад. разряд		
05	Безопасное положение выходного устройства DO2 в случае отказа датчика, линии связи или измерительного канала		0000 – последнее положение 0001 – откл. 0002 – вкл.	0000			

Пункт меню	Параметр	Еди- ницы изме- рения	пица параметров регулятора Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	CTRL	(LErl	₋) Конфигурация стру	ктуры	регул	ятор	oa
00	Тип регулятора		0000 — 2-х позицион 0001 — 3-х позицион. 0002 — ПИД-ШИМ-регулятор 0003 — ПИД-аналоговый 0004 — ПИД-импульсный	0000	0001	3. 7.2	
01	Тип управления регулятора		0000 – обратное 0001 – прямое	0000			E = SP – PV E = PV – SP
02	Скорость динамической балансировки задания	техн. ед./мин	От 000,0 до 999,9	0,000	000,1	6. 4.2	0 - откл. С учетом децим. разделителя PV
03	Время механизма Тм или период ПИД-ШИМ	сек.	От 000,0 до 999,9	010,0	000,1		Для импульсного и ШИМ регулятора
04	Минимальная длительность импульса Тмин	сек.	От 000,0 до 999,9	000,1	000,1		Для импульсного регулятора
05	Задержка на включение DO в противоположном направлении	сек.	От 000,0 до 999,9	000,1	000,1	3. 10	Для импульсного регулятора
06	Зона нечувствительности 3-х позиционного регулятора (Мертвая зона)	техн. ед.	От 000,0 до 999,9	0000		3. 10	Данный параметр представляет половинное значение зоны. С учетом децим. разделителя PV
07	Гистерезис 2-х, 3-х позиционного регулятора	техн. ед.	От 0000 до 0900	0000		3. 10	С учетом децим. разделителя PV
08	Ограничение МИН аналоговой ячейки регулятора	%	От минус 009,9 до 0109,9	0,000			Для ПИД – аналогового и
09	Ограничение МАКС аналоговой ячейки регулятора	%	От минус 009,9 до 0109,9	099,9			ПИД – ШИМ регулятора.
10	Безопасное положение выхода регулятора в случае отказа датчика, линии связи или измерительного канала		0000 – последнее положение 0001 – 0% (откл.) 0002 – 100% (вкл.) 0003 – безопасное положение устанавливаемое пользователем	0000	0001		
11	Значение безопасного положения устанавливаемого пользователем	%	От 000,0 до 099,9	000,0	000,1		
12	Тип технологической сигнализации		0000 – абсолютная 0001 – девиационная	0000	0001	3. 11	
13	Уставка "минимум" технологической сигнализации	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	040,0		3. 11	С учетом децим. разделителя PV
14	Уставка "максимум" технологической сигнализации	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	060,0		3. 11	С учетом децим. разделителя PV
15	Гистерезис технологической сигнализации	техн. ед.	От 000,0 до 090,0	0,000		3. 11	С учетом децим. разделителя PV
	LNRX (L r	лг <u>о</u>) 🗛	бсциссы (Х) опорны	х точен	(линеа	ариз	ации
00	Абсцисса начального значения (в % от входного сигнала)	%	От 00,00 до 99,99		00,01	5.2	
						-//-	
19	Абсцисса 19 точки	%	От 00,00 до 99,99		00,01	-//-	

Продолжение таблицы Г.1 - Сводная таблица параметров регулятора МИК-111

11,00001	Menae maemaqBri : 1 Gee	Еди-	пица параметров регулятора	Знач.	Шаг		
Пункт меню	Параметр	ницы изме- рения	Диапазон изменения параметра	по- умол- чанию	изме- нения	Раз- дел	Примечание
	LNRY (L r	ir 5) C	рдинаты (У) опорны	х точеі	к линеа	ариз	ации
00	Ордината начального значения (сигнал в технических единицах от -999 до 9999)	техн. ед.	От минус 9999 до 9999	0000	Млад. разряд	5.2	
		техн. ед.				-//-	
19	Ордината 19 точки	техн. ед.	От минус 9999 до 9999	0000	Млад. разряд	-//-	
	CAL	i (C A L) Калибровка анал	оговог	о вход	a Al	
ıL	Контроль входного сигнала	%	От минус 5,0 до 25,0	0,000		5.1	Только контроль
EL	Калибровки начального значения шкалы измерения	техн. ед.	От минус 9999 до 9999	0000	Млад ший разряд	-//-	
ıН	Контроль входного сигнала	%	От 90,0 до 110,0	100,0	, , , , , ,	-//-	Только контроль
ЕН	Калибровки конечного значения шкалы измерения	техн. ед.	От минус 9999 до 9999	0000	Млад ший	-//-	
L	Контроль результатов калибровки нижнего придела шкалы измерения	код АЦП	От 1,400 до 5,000	1,700		-//-	Только контроль
Н	Контроль результатов калибровки конечного значения шкалы измерения	код АЦП	От 4,800 до 22,00	10,00		-//-	Только контроль
	COF	RR (L 🗆	┌ ┌) Коррекция анало	огового	входа	a Al	
00	Коррекция аналогового входа	техн. ед.	От минус 9999 до 9999	0000	000,1		Индицирует PV=PV+∆
01	Коэффициент коррекции (смещение) аналогового входа	техн. ед.	От минус 9999 до 9999	0000	000,1		Индицирует Δ
	CALO	(ERL	□) Калибровка анало	гового	выход	ца А	0
00	Индикация и изменение состояния аналогового выхода АО	%	От 0 до 100			5.5	
01	Калибровка начального значения аналогового выхода АО					-//-	
02	Калибровка конечного значения аналогового выхода АО					-//-	
		S	YS (5 월 5) Общие пар	аметры	ol .		
00	Сетевой адрес (номер регулятора в сети)		От 0000 до 0255	0000	0001	1. 3.5	0000 – отключен от сети
01	Скорость обмена	бит/с	0000 - 2400 0001 - 4800 0002 - 9600 0003 - 14400 0004 - 19200 0005 - 28800 0006 - 38400 0007 - 57600 0008 - 76800 0009 - 115200 0010 - 230400 0011 - 460800 0012 - 921600	0004	0001	1. 3.5	
02	Тайм-аут кадра запроса в системных тактах 1 такт = 250 мкс		От 0001 до 0200	0006	0001	В	

Окончание таблицы Г.1 - Сводная таблица параметров регулятора МИК-111

Пункт меню	Параметр	Еди- ницы изме- рения	Диапазон изменения параметра	Знач. по- умол- чанию	Шаг изме- нения	Раз- дел	Примечание					
03	Код регулятора. Версия программного обеспечения			11.xx			Служебная информация Код 11 Версия хх (напр. 11.11)					
04	Коррекция показаний датчика термокомпенсации					5.1						
SAVE (5月山Е) Сохранение параметров												
00	Разрешение программирования по сети ModBus		0000 0001 – разрешено			4. 7.5						
01	Запись параметров в энергонезависимую память		0000 0001 – записать			4. 7.5						

Лист регистрации изменений

Изм.	Номера	ера листов (страниц)		Всего листов в	№ документа	Входящий № сопровождаю- щего документа и дата	Подп.	Дата
	Изме- ненных	Заме- ненных	Но- вых	докумен те	документа	щего документа и дата		
1.01				60		Приведен в соответствие рисунок Б.1	Лукащук Р.О	20.08.2012
1.02				60		Изменен тип сетевого разъема	C.B.M	02.10.2012
1.03				60		Изменен код изделия	C.B.M	19.12.2013
1.04				61	ver.11.16	Исправлены неточности в тексте, изменен код изделия	Марикот Д.Я.	11.04.2014